2.8. Lecture 8

2.8.1. Irreducible characters and the character table

Definition 2.8.1.

A character is called irreducible if the representation corresponding to it is irreducible.

Recall from Proposition 2.7.9 (ii) that the character of a representation is constant on conjugacy classes. Observe also that by Proposition 2.7.9 (iii) and Theorem 1.5.12, every character may be written as an finite sum of irreducible characters. Thus, all the characters are completely determined by the values of the irreducible characters on each conjugacy class of GG.

We often collect this data in a character table. This has columns labelled by the conjugacy classes of GG, and rows labelled by the irreducible representations. The entries are the values of the characters of the irreducible representations on elements of the conjugacy class.

Example 2.8.2.

Here is the character table of S3S_{3}. We label each column by a representative element of the conjugacy class. It is also common, as here, to write the number of elements in the conjugacy class in the second row.

class:e(12)(123)size:132triv111sgn111π201\begin{array}[h]{c|rrr}\text{class:}&e&(12)&(123)\\ \text{size:}&1&3&2\\ \hline\cr{\mathrm{triv}}&1&1&1\\ \mathrm{sgn}&1&-1&1\\ \pi&2&0&-1\end{array}
Example 2.8.3.

Let G=CnG=C_{n} and ω=e2πi/n\omega=e^{2\pi i/n}. Then we can write down the character table of CnC_{n}; we will do this for n=5n=5 for concreteness. Since GG is Abelian, all conjugacy classes are singletons so we will omit the second row.

Classegg2g3g4triv11111χ1ωω2ω3ω4χ21ω2ω4ωω3χ31ω3ωω4ω2χ41ω4ω3ω2ω\begin{array}[h]{c|rrrrrrr}\text{Class}&e&g&g^{2}&g^{3}&g^{4}\\ \hline\cr{\mathrm{triv}}&1&1&1&1&1\\ \chi&1&\omega&\omega^{2}&\omega^{3}&\omega^{4}\\ \chi^{2}&1&\omega^{2}&\omega^{4}&\omega&\omega^{3}\\ \chi^{3}&1&\omega^{3}&\omega&\omega^{4}&\omega^{2}\\ \chi^{4}&1&\omega^{4}&\omega^{3}&\omega^{2}&\omega\end{array}
Remark 2.8.4.

It is standard practice to put the identity conjugacy class and the trivial representation in the the first column and row respectively.

From these two examples, we conjecture:

Theorem 2.8.5.

The character table is square, i.e. the number of (isomorphism classes) of irreducible representations of a finite group is equal to the number of conjugacy classes.

This will follow from a stronger theorem, which is the main result of this chapter.

2.8.2. Class functions

Definition 2.8.6.

A class function is a function GG\rightarrow{\mathbb{C}} that is constant on conjugacy classes. The set of all ({\mathbb{C}}-valued) class functions on a group GG is denoted CF(G)CF(G).

Observe that CF(G)CF(G) is a vector space. It has dimension equal to the number of conjugacy classes of GG (since the indicator functions of the conjugacy classes form a basis of CF(G)CF(G)), and a natural inner product

f1,f2G:=1|G|gGf1(g)f2(g)¯=1|G|conj.classes𝒞G|𝒞|f1(𝒞)f2(𝒞)¯\langle f_{1},f_{2}\rangle_{G}:=\frac{1}{|G|}\sum_{g\in G}f_{1}(g)\overline{f_% {2}(g)}=\frac{1}{|G|}\sum_{\mathrm{conj.\;classes}\;{\mathcal{C}}\subseteq G}|% {\mathcal{C}}|f_{1}({\mathcal{C}})\overline{f_{2}({\mathcal{C}})}

for all f1,f2CF(G)f_{1},f_{2}\in CF(G).

Theorem 2.8.7.

The set {χρ}ρIrr(G)\{\chi_{\rho}\}_{\rho\in\mathrm{Irr}(G)} is an orthonormal basis of CF(G)CF(G) with respect to the inner product ,G\langle\cdot,\cdot\rangle_{G}.

We will prove this over the course of the next two lectures. First we give a corollary to it.

Corollary 2.8.8.

Let 𝒞{\mathcal{C}} be a conjugacy class of GG. We denote the column of the character table corresponding to 𝒞{\mathcal{C}} by [𝒞][{\mathcal{C}}], when considered as an element of |Irr(G)|{\mathbb{C}}^{|\mathrm{Irr}(G)|}. We have

[𝒞][𝒟]={0if𝒞𝒟,|G||𝒞|if𝒞=𝒟.[{\mathcal{C}}]\cdot[{\mathcal{D}}]=\begin{cases}0&\quad\mathrm{if}\;{\mathcal% {C}}\neq{\mathcal{D}},\\ \frac{|G|}{|{\mathcal{C}}|}&\quad\mathrm{if}\;{\mathcal{C}}={\mathcal{D}}.\end% {cases}
Proof.

Let 1𝒞\mathbbold{1}_{{\mathcal{C}}} denote the indicator function of 𝒞{\mathcal{C}}, i.e. 1𝒞(g)=1\mathbbold{1}_{{\mathcal{C}}}(g)=1 if g𝒞g\in{\mathcal{C}}, and zero otherwise. Since conjugacy classes are disjoint, we have

1𝒞,1𝒟G=1|G|gG1𝒞(g)1𝒟(g)¯={0if𝒞𝒟|𝒞||G|if𝒞=𝒟.\langle\mathbbold{1}_{{\mathcal{C}}},\mathbbold{1}_{{\mathcal{D}}}\rangle_{G}=% \frac{1}{|G|}\sum_{g\in G}\mathbbold{1}_{{\mathcal{C}}}(g)\overline{\mathbbold% {1}_{{\mathcal{D}}}(g)}=\begin{cases}0&\quad\mathrm{if}\;{\mathcal{C}}\neq{% \mathcal{D}}\\ \frac{|{\mathcal{C}}|}{|G|}&\quad\mathrm{if}\;{\mathcal{C}}={\mathcal{D}}.\end% {cases}

By Theorem 2.8.7, the irreducible characters form an orthonormal basis of CF(G)CF(G), hence

1𝒞(g)=ρIrr(G)1𝒞,χρGχρ(g),1𝒟(g)=σIrr(G)1𝒟,χσGχσ(g).\mathbbold{1}_{{\mathcal{C}}}(g)=\sum_{\rho\in\mathrm{Irr}(G)}\langle% \mathbbold{1}_{{\mathcal{C}}},\chi_{\rho}\rangle_{G}\,\chi_{\rho}(g),\quad% \mathbbold{1}_{{\mathcal{D}}}(g)=\sum_{\sigma\in\mathrm{Irr}(G)}\langle% \mathbbold{1}_{{\mathcal{D}}},\chi_{\sigma}\rangle_{G}\,\chi_{\sigma}(g).

Substituting in these two expressions into the previous equality gives

1|G|gGρ,σIrr(G)1𝒞,χρGχρ(g)1𝒟,χσGχσ(g)¯={0if𝒞𝒟|𝒞||G|if𝒞=𝒟.\frac{1}{|G|}\sum_{g\in G}\sum_{\rho,\sigma\in\mathrm{Irr}(G)}\langle% \mathbbold{1}_{{\mathcal{C}}},\chi_{\rho}\rangle_{G}\,\chi_{\rho}(g)\overline{% \langle\mathbbold{1}_{{\mathcal{D}}},\chi_{\sigma}\rangle_{G}\,\chi_{\sigma}(g% )}=\begin{cases}0&\quad\mathrm{if}\;{\mathcal{C}}\neq{\mathcal{D}}\\ \frac{|{\mathcal{C}}|}{|G|}&\quad\mathrm{if}\;{\mathcal{C}}={\mathcal{D}}.\end% {cases}

By swapping the order of summation,

1|G|\displaystyle\frac{1}{|G|} gGρ,σIrr(G)1𝒞,χρG1𝒟,χσGχσ(g)¯\displaystyle\sum_{g\in G}\sum_{\rho,\sigma\in\mathrm{Irr}(G)}\langle% \mathbbold{1}_{{\mathcal{C}}},\chi_{\rho}\rangle_{G}\overline{\langle% \mathbbold{1}_{{\mathcal{D}}},\chi_{\sigma}\rangle_{G}\,\chi_{\sigma}(g)}
=ρ,σIrr(G)1𝒞,χρG1𝒟,χσG¯1|G|gGχρ(g)χσ(g)¯.\displaystyle=\sum_{\rho,\sigma\in\mathrm{Irr}(G)}\langle\mathbbold{1}_{{% \mathcal{C}}},\chi_{\rho}\rangle_{G}\overline{\langle\mathbbold{1}_{{\mathcal{% D}}},\chi_{\sigma}\rangle_{G}}\frac{1}{|G|}\sum_{g\in G}\chi_{\rho}(g)% \overline{\chi_{\sigma}(g)}.

Again using Theorem 2.8.7, we have gGχρ(g)χσ(g)¯=0\sum_{g\in G}\chi_{\rho}(g)\overline{\chi_{\sigma}(g)}=0 unless σ=ρ\sigma=\rho, in which case it equals one. This gives

ρIrr(G)1𝒞,χρG1𝒟,χρG¯={0if𝒞𝒟|𝒞||G|if𝒞=𝒟,\sum_{\rho\in\mathrm{Irr}(G)}\langle\mathbbold{1}_{{\mathcal{C}}},\chi_{\rho}% \rangle_{G}\overline{\langle\mathbbold{1}_{{\mathcal{D}}},\chi_{\rho}\rangle_{% G}}=\begin{cases}0&\quad\mathrm{if}\;{\mathcal{C}}\neq{\mathcal{D}}\\ \frac{|{\mathcal{C}}|}{|G|}&\quad\mathrm{if}\;{\mathcal{C}}={\mathcal{D}},\end% {cases}

and the claim then follows from the identity 1𝒞,χρG=|𝒞||G|χρ(𝒞)\langle\mathbbold{1}_{{\mathcal{C}}},\chi_{\rho}\rangle_{G}=\frac{|{\mathcal{C% }}|}{|G|}\chi_{\rho}({\mathcal{C}}) and noting that

[𝒞][𝒟]=ρIrr(G)χρ(𝒞)χρ(𝒟)¯.[{\mathcal{C}}]\cdot[{\mathcal{D}}]=\sum_{\rho\in\mathrm{Irr}(G)}\chi_{\rho}({% \mathcal{C}})\overline{\chi_{\rho}({\mathcal{D}})}.

. ∎

2.8.3. Exercises

.

Problem 47. Verify that Theorem 2.8.7 holds for the character tables of S3S_{3}, C5C_{5}, and D4D_{4}.

Problem 48. Compute the character tables of the following groups (You shouldn’t need to use Theorem 2.8.7 for this):

  1. (a)

    C9C_{9}

  2. (b)

    C3×C3C_{3}\times C_{3}

  3. (c)

    D5D_{5}

  4. (d)

    Q8Q_{8}

  5. (e)

    DnD_{n}

(You will need to find the conjugacy classes and irreducible representations for each of these groups. See the exercises from previous lectures! )

Problem 49. Write the character table of a group GG as a matrix TT. Use Theorem 2.8.7 to show that

|det(T)|=con.classesG|G||𝒞|.|\det(T)|=\sqrt{\prod_{\mathrm{con.\,classes}\,{\mathbb{C}}\subseteq G}\frac{|% G|}{|{\mathcal{C}}|}}.