2.7. Lecture 7

2.7.1. Characters

Throughout this section, GG is a finite group and VV is a finite-dimensional complex vector space.

Definition 2.7.1.

Let (π,V)(\pi,V) be a finite-dimensional complex representation of GG. The character of (π,V)(\pi,V) is the function χπ:G\chi_{\pi}:G\rightarrow{\mathbb{C}} defined by

χπ(g):=tr(π(g)).\chi_{\pi}(g):=\operatorname{tr}\big{(}\pi(g)\big{)}.
Remark 2.7.2.

Here we define trA\operatorname{tr}A (A:VV)A:V\rightarrow V) as the sum of the eigenvalues of the matrix AA (with multiplicities). It is a theorem from linear algebra that this is equal to the sum of the diagonal elements of the matrix of AA with respect to any choice of basis of VV

Example 2.7.3.

Let (Id,V)({\,\mathrm{Id}},V) be the trivial representation of GG on VV. Then χId(g)=dimV\chi_{{\,\mathrm{Id}}}(g)=\operatorname{dim}V for all gGg\in G.

Example 2.7.4.

Let (ρ,2)(\rho,{\mathbb{C}}^{2}) be the defining representation of DnD_{n}. Then

ρ(e)=(1001),ρ(s)=(1001),ρ(r)=(cos(2π/n)sin(2π/n)sin(2π/n)cos(2π/n)),\rho(e)=\left(\begin{matrix}1&0\\ 0&1\end{matrix}\right),\quad\rho(s)=\left(\begin{matrix}1&0\\ 0&-1\end{matrix}\right),\quad\rho(r)=\left(\begin{matrix}\cos(2\pi/n)&-\sin(2% \pi/n)\\ \sin(2\pi/n)&\cos(2\pi/n)\end{matrix}\right),

hence χρ(e)=2\chi_{\rho}(e)=2, χρ(s)=0\chi_{\rho}(s)=0, χρ(r)=2cos(2π/n)\chi_{\rho}(r)=2\cos(2\pi/n).

Important: χπ(gh)χπ(g)χπ(h)!\chi_{\pi}(gh)\neq\chi_{\pi}(g)\chi_{\pi}(h)! This is easily seen from the previous example, as s2=es^{2}=e.

The following lemma is quite important:

Lemma 2.7.5.

Isomorphic representations have the same character.

Proof.

By Problem 1.3.2, if π\pi and ρ\rho are isomorphic, then π(g)\pi(g) and ρ(g)\rho(g) have the same eigenvalues, hence also the same traces. ∎

It seems that we throw away a lot of information when we go from studying a representation to studying its character; the remarkable thing is that, in fact, the character completely determines the representation. Moreover, there is a lot of structure to the characters and it is often possible to find all of the characters of a group, even when it is not clear how to construct the representations!

Example 2.7.6.

If (ψ,)(\psi,{\mathbb{C}}) is a 1-dimensional representation, then ψ\psi is its own character (the trace of a scalar is just itself).

Example 2.7.7.

Let (π,n)(\pi,{\mathbb{C}}^{n}) be the permutation representation of SnS_{n}. Then

χπ(σ)=#{j{1,2,,n}|σ(j)=j}.\chi_{\pi}(\sigma)=\#\big{\{}j\in\{1,2,\ldots,n\}\,|\,\sigma(j)=j\big{\}}.
Proof.

Given σSn\sigma\in S_{n}, consider the matrix of π(σ)\pi(\sigma) with respect to the standard basis 𝐞1,,𝐞n{\bf e}_{1},\ldots,{\bf e}_{n}. The jj-th column of this matrix is π(σ)𝐞j=𝐞σ(j)\pi(\sigma){\bf e}_{j}={\bf e}_{\sigma(j)}. Thus, this column will contribute +1+1 to the trace if it has a 11 in the jj-th row (i.e. if σ(j)=j\sigma(j)=j), and zero otherwise. ∎

By a similar argument:

Example 2.7.8.

Let (λ,G)(\lambda,{\mathbb{C}}G) be the regular representation of GG. Then

χλ(g)={|G|ifg=e0otherwise.\chi_{\lambda}(g)=\begin{cases}|G|\quad&\mathrm{if}\;g=e\\ 0\quad&\mathrm{otherwise.}\end{cases}
Proof.

Let h1,h2,,h|G|h_{1},h_{2},\ldots,h_{|G|} be an enumeration of the elements of GG; this forms a basis of G{\mathbb{C}}G. Then for any jj, we have

λ(g)hj=ghj=hk\lambda(g)h_{j}=gh_{j}=h_{k}

for some k{1,,|G|}k\in\{1,\ldots,|G|\}. The jj-th column of the matrix of λ(g)\lambda(g) is the coordinate vector of hkh_{k} with respect to the choice of basis, i.e. it has a 11 in row kk, and zeroes elsewhere. This gives a non-zero contribution to the trace (in in that case +1) if and only if hkh_{k} is on the diagonal, i.e. hk=hjh_{k}=h_{j}. But hk=ghjh_{k}=gh_{j}, so this happens if and only if g=eg=e. ∎

We collect several useful properties of characters in the following proposition:

Proposition 2.7.9.

Let (π,V)(\pi,V) and (ρ,W)(\rho,W) be finite-dimensional representations of a finite group GG. Then

  1. (i)

    χπ(e)=dimV\chi_{\pi}(e)=\operatorname{dim}V.

  2. (ii)

    χπ(gh)=χπ(hg)\chi_{\pi}(gh)=\chi_{\pi}(hg) and χπ(hgh1)=χπ(g)\chi_{\pi}(hgh^{-1})=\chi_{\pi}(g) for all g,hGg,h\in G.

  3. (iii)

    χπρ=χπ+χρ\chi_{\pi\oplus\rho}=\chi_{\pi}+\chi_{\rho}

  4. (iv)

    χπ(g1)=χπ(g)¯\chi_{\pi}(g^{-1})=\overline{\chi_{\pi}(g)} for all gGg\in G.

Proof.

0

  1. (i)

    χπ(e)=tr(Id)=dimV\chi_{\pi}(e)=\operatorname{tr}({\,\mathrm{Id}})=\operatorname{dim}V.

  2. (ii)

    This follows from the linear algebra identity tr(AB)=tr(BA)\operatorname{tr}(AB)=\operatorname{tr}(BA).

  3. (iii)

    Let {𝐯i}i=1,,dimV\{{\bf v}_{i}\}_{i=1,\ldots,\operatorname{dim}V} be an an eigenbasis of VV for π(g)\pi(g) with eigenvalues λi\lambda_{i}, and {𝐰j}j=1,,dimW\{{\bf w}_{j}\}_{j=1,\ldots,\operatorname{dim}W} an eigenbasis of WW for ρ(g)\rho(g) with eigenvalues μj\mu_{j}. Then {(𝐯i,𝟎)}i{(𝟎,𝐰j)}j\{({\bf v}_{i},{\bf 0})\}_{i}\cup\{({\bf 0},{\bf w}_{j})\}_{j} is a basis of VWV\oplus W. This is in fact an eigenbasis for (πρ)(g)(\pi\oplus\rho)(g), since

    (πρ)(g)(𝐯i,𝟎)=(π(g)𝐯i,ρ(g)𝟎)=(λi𝐯i,𝟎)=λi(𝐯i,𝟎),(\pi\oplus\rho)(g)({\bf v}_{i},{\bf 0})=(\pi(g){\bf v}_{i},\rho(g){\bf 0})=(% \lambda_{i}{\bf v}_{i},{\bf 0})=\lambda_{i}({\bf v}_{i},{\bf 0}),

    and similarly (πρ)(g)(𝟎,𝐰j)=μj(𝟎,𝐰j)(\pi\oplus\rho)(g)({\bf 0},{\bf w}_{j})=\mu_{j}({\bf 0},{\bf w}_{j}). All the eigenvalues of (πρ)(g)(\pi\oplus\rho)(g) are thus given by {λi}{μj}\{\lambda_{i}\}\cup\{\mu_{j}\}, hence

    χπρ(g)=iλi+jμj=χπ(g)+χρ(g).\chi_{\pi\oplus\rho}(g)=\sum_{i}\lambda_{i}+\sum_{j}\mu_{j}=\chi_{\pi}(g)+\chi% _{\rho}(g).
  4. (iv)

    This follows from the fact that for any eigenvector 𝐯i{\bf v}_{i} of π(g)\pi(g) with eigenvalue λi\lambda_{i}, we have

    𝐯i=π(e)𝐯i=π(g1)π(g)𝐯i=λiπ(g1)𝐯i,{\bf v}_{i}=\pi(e){\bf v}_{i}=\pi(g^{-1})\pi(g){\bf v}_{i}=\lambda_{i}\pi(g^{-% 1}){\bf v}_{i},

    so π(g1)𝐯i=λi1𝐯i\pi(g^{-1}){\bf v}_{i}=\lambda_{i}^{-1}{\bf v}_{i}. Since π(g)\pi(g) has finite order, λi|G|=1\lambda_{i}^{|G|}=1, giving λi1=λi¯\lambda_{i}^{-1}=\overline{\lambda_{i}}. This then yields

    χπ(g1)=iλi1=iλi¯=iλi¯=χπ(g)¯.\chi_{\pi}(g^{-1})=\sum_{i}\lambda_{i}^{-1}=\sum_{i}\overline{\lambda_{i}}=% \overline{\sum_{i}\lambda_{i}}=\overline{\chi_{\pi}(g)}.

2.7.2. Exercises

.

Problem 43. Let (π,W0)(\pi,W_{0}) denote the usual (n1)(n-1)-dimensional irreducible subrepresentation of the permutation representation of SnS_{n} on n{\mathbb{C}}^{n}. Compute the character χ(π,W0)\chi_{(\pi,W_{0})} of this subrepresentation.

Hint: combine Example 2.7.7 with Proposition 2.7.9 (iii).

Problem 44. Let gGg\in G be such that gg and g1g^{-1} are both in the same conjugacy class. Show that χπ(g)\chi_{\pi}(g) is real-valued for any representation π\pi of GG.

Problem 45. Let (π,V)(\pi,V) be a representation of a finite group GG. Show that

  1. (a)

    |χπ(g)|dim(π)gG|\chi_{\pi}(g)|\leq\operatorname{dim}(\pi)\quad\forall g\in G.

  2. (b)

    kerπ=χπ1({dim(π)}).\ker\pi=\chi_{\pi}^{-1}\big{(}\{\operatorname{dim}(\pi)\}\big{)}.

Problem 46. Let the finite group GG act on the finite set XX, and consider the representation (π,(X))\big{(}\pi,{\mathbb{C}}(X)\big{)} as in Definition 1.1.9. Show that

χπ(g)=#{xX|gx=x}.\chi_{\pi}(g)=\#\{x\in X\,|\,g\cdot x=x\}.