4.18. Lecture 18

4.18.1. Irreducibility of Specht modules

The goal is to prove the first part of Theorem 4.17.12. Recall that for any Young tableau tt, Cโข(t)โІSnC(t)\subseteq S_{n} is the set of permutations that preserve the columns of tt.

Lemma 4.18.1.

For any tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda}, Cโข(t)C(t) is a subgroup of SnS_{n}, and for any ฯƒโˆˆSn\sigma\in S_{n},

ฯƒโขCโข(t)โขฯƒโˆ’1=Cโข(ฯƒโ‹…t).\sigma C(t)\sigma^{-1}=C(\sigma\cdot t).
Proof.

This is Problem 4.18.2. โˆŽ

Recall that for tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda}, we define ๐žt=โˆ‘ฯƒโˆˆCโข(t)sgnโก(ฯƒ)โข[ฯƒโ‹…t]{\bf e}_{t}=\sum_{\sigma\in C(t)}\operatorname{sgn}(\sigma)[\sigma\cdot t], and ๐’ฎฮป=spanโข{๐žt|tโˆˆ๐˜๐“ฮป}โІโ„ณฮป{\mathcal{S}}^{\lambda}=\mathrm{span}\{{\bf e}_{t}\,|\,t\in\mathbf{YT}^{% \lambda}\}\subseteq{\mathcal{M}}^{\lambda}.

Proposition 4.18.2.

For any ฯƒโˆˆSn\sigma\in S_{n} and tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda}, ฯ€โข(ฯƒ)โข๐žt=๐žฯƒโ‹…t\pi(\sigma){\bf e}_{t}={\bf e}_{\sigma\cdot t}. As a consequence, (ฯ€,๐’ฎฮป)(\pi,{\mathcal{S}}^{\lambda}) is a subrepresentation of (ฯ€,โ„ณฮป)(\pi,{\mathcal{M}}^{\lambda}).

Proof.

We have

ฯ€โข(ฯƒ)โข๐žt=โˆ‘ฯ„โˆˆCโข(t)sgnโข(ฯ„)โข[ฯƒโ‹…(ฯ„โ‹…t)]=โˆ‘ฯ„โˆˆCโข(t)sgnโข(ฯ„)โข[ฯƒโขฯ„โขฯƒโˆ’1โ‹…(ฯƒโ‹…t)].\pi(\sigma)\mathbf{e}_{t}=\sum_{\tau\in C(t)}\mathrm{sgn}(\tau)[\sigma\cdot(% \tau\cdot t)]=\sum_{\tau\in C(t)}\mathrm{sgn}(\tau)[\sigma\tau\sigma^{-1}\cdot% (\sigma\cdot t)].

Using the previous lemma, we may rewrite this as follows:

ฯ€โข(ฯƒ)โข๐žt=โˆ‘ฯ„โˆˆCโข(ฯƒโ‹…t)sgnโข(ฯƒโˆ’1โขฯ„โขฯƒ)โข[ฯ„โ‹…(ฯƒโ‹…t)]=โˆ‘ฯ„โˆˆCโข(ฯƒโ‹…t)sgnโข(ฯ„)โข[ฯ„โ‹…(ฯƒโ‹…t)]=๐žฯƒโ‹…t.\pi(\sigma)\mathbf{e}_{t}=\sum_{\tau\in C(\sigma\cdot t)}\mathrm{sgn}(\sigma^{% -1}\tau\sigma)[\tau\cdot(\sigma\cdot t)]=\sum_{\tau\in C(\sigma\cdot t)}% \mathrm{sgn}(\tau)[\tau\cdot(\sigma\cdot t)]=\mathbf{e}_{\sigma\cdot t}.

โˆŽ

Given tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda}, define Pt:โ„ณฮปโ†’โ„ณฮปP_{t}:{\mathcal{M}}^{\lambda}\rightarrow{\mathcal{M}}^{\lambda} by

Pt=โˆ‘ฯƒโˆˆCโข(t)sgnโก(ฯƒ)โ‹…ฯ€โข(ฯƒ).P_{t}=\sum_{\sigma\in C(t)}\operatorname{sgn}(\sigma)\cdot\pi(\sigma).

Observe that Ptโข[t]=๐žtP_{t}[t]={\bf e}_{t} and if (ฯ€,W)(\pi,W) is a subrepresentation of (ฯ€,โ„ณฮป)(\pi,{\mathcal{M}}^{\lambda}), then Ptโข๐ฐโˆˆWP_{t}{\bf w}\in W for all tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda} and ๐ฐโˆˆW{\bf w}\in W.

Lemma 4.18.3.

Let โŸจโ‹…,โ‹…โŸฉ\langle\cdot,\cdot\rangle be any SnS_{n}-invariant inner product on โ„ณฮป{\mathcal{M}}^{\lambda}. Then PtP_{t} is self-adjoint with respect to โŸจโ‹…,โ‹…โŸฉ\langle\cdot,\cdot\rangle, i.e.

โŸจPtโข๐ฎ,๐ฏโŸฉ=โŸจ๐ฎ,Ptโข๐ฏโŸฉโˆ€๐ฎ,๐ฏโˆˆโ„ณฮป.\langle P_{t}{\bf u},{\bf v}\rangle=\langle{\bf u},P_{t}{\bf v}\rangle\qquad% \forall{\bf u},{\bf v}\in{\mathcal{M}}^{\lambda}.
Proof.

Since {[s]}sโˆˆ๐˜๐“๐ƒฮป\{[s]\}_{s\in\mathbf{YTD}^{\lambda}} spans โ„ณฮป{\mathcal{M}}^{\lambda}, by linearity it suffices to show that โŸจPtโข[s],[r]โŸฉ=โŸจ[s],Ptโข[r]โŸฉ\langle P_{t}[s],[r]\rangle=\langle[s],P_{t}[r]\rangle for all r,s,tโˆˆ๐˜๐“ฮปr,s,t\in\mathbf{YT}^{\lambda}. By the definition of PtP_{t}, we then have

โŸจPtโข[s],[r]โŸฉ=\displaystyle\langle P_{t}[s],[r]\rangle= โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒ)โขโŸจฯ€โข(ฯƒ)โข[s],[r]โŸฉ=โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒ)โขโŸจ[s],ฯ€โข(ฯƒโˆ’1)โข[r]โŸฉ\displaystyle\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)\langle\pi(\sigma)[s],[r% ]\rangle=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)\langle[s],\pi(\sigma^{-1})[% r]\rangle
=โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒโˆ’1)โขโŸจ[s],ฯ€โข(ฯƒโˆ’1)โข[r]โŸฉ=โˆ‘ฯƒโˆ’1โˆˆCโข(t)โŸจ[s],sgnโข(ฯƒ)โขฯ€โข(ฯƒ)โข[r]โŸฉ\displaystyle=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma^{-1})\langle[s],\pi(% \sigma^{-1})[r]\rangle=\sum_{\sigma^{-1}\in C(t)}\langle[s],\mathrm{sgn}(% \sigma)\pi(\sigma)[r]\rangle
=โˆ‘ฯƒโˆˆCโข(t)โŸจ[s],sgnโข(ฯƒ)โขฯ€โข(ฯƒ)โข[r]โŸฉ=โŸจ[s],Ptโข[r]โŸฉ;\displaystyle=\sum_{\sigma\in C(t)}\langle[s],\mathrm{sgn}(\sigma)\pi(\sigma)[% r]\rangle=\langle[s],P_{t}[r]\rangle;

the second to last equality holding since Cโข(t)C(t) is a subgroup of SnS_{n}. โˆŽ

Proposition 4.18.4.

For any tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda} and ๐ฏโˆˆโ„ณฮป{\bf v}\in{\mathcal{M}}^{\lambda}, Ptโข๐ฏโˆˆโ„‚โข๐žtP_{t}{\bf v}\in{\mathbb{C}}{\bf e}_{t}.

Proof.

Again using the fact that the tabloids [s][s] span โ„ณฮป{\mathcal{M}}^{\lambda}, we need only show that Ptโข[s]โˆˆโ„‚โข๐žtP_{t}[s]\in{\mathbb{C}}{\bf e}_{t} for each s,tโˆˆ๐˜๐“ฮปs,t\in\mathbf{YT}^{\lambda}. Let ii and jj be in the same column of tt, so (iโขj)(ij) is in Cโข(t)C(t). We consider two cases.

Firstly, suppose that ss is such that [s][s] has the numbers i,ji,j in a single row. Let H=โŸจ(iโขj)โŸฉ={e,(iโขj)}H=\langle(ij)\rangle=\{e,(ij)\}. We now let r1,โ€ฆ,rmโˆˆCโข(t)r_{1},\ldots,r_{m}\in C(t) be a set of representatives for Cโข(t)/HC(t)/H, i.e.

Cโข(t)=r1โขHโŠ”r2โขHโŠ”โ€ฆโŠ”rmโขH.C(t)=r_{1}H\sqcup r_{2}H\sqcup\ldots\sqcup r_{m}H.

Since [s][s] has ii and jj in the same row, ฯ€โข(iโขj)โข[s]=[(iโขj)โ‹…s]=[s]\pi(ij)[s]=[(ij)\cdot s]=[s]. We can now compute:

Ptโข[s]=โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒ)โขฯ€โข(ฯƒ)โข[s]=\displaystyle P_{t}[s]=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)\pi(\sigma)[s]= โˆ‘k=1msgnโข(rk)โขฯ€โข(rk)โข(sgnโข(e)โขฯ€โข(e)+sgnโข(iโขj)โขฯ€โข(iโขj))โข[s]\displaystyle\sum_{k=1}^{m}\mathrm{sgn}(r_{k})\pi(r_{k})\Big{(}\mathrm{sgn}(e)% \pi(e)+\mathrm{sgn}(ij)\pi(ij)\Big{)}[s]
=โˆ‘k=1msgnโข(rk)โขฯ€โข(rk)โข(1+(โˆ’1))โข[s]=0.\displaystyle=\sum_{k=1}^{m}\mathrm{sgn}(r_{k})\pi(r_{k})\big{(}1+(-1)\big{)}[% s]=0.

We now consider the remaining case, i.e.ย ii and jj are in different rows of [s][s]. Letting the first column of tt be a1,1,a1,2,โ€ฆ,a1,Ma_{1,1},a_{1,2},\ldots,a_{1,M}, we let ฯƒ1โˆˆCโข(t)\sigma_{1}\in C(t) be a permutation that moves each a1,ia_{1,i} into the row that it is in in [s][s], and fixes all other elements. Similarly, let ฯƒ2\sigma_{2} be a permutation that permutes the elements of the second column into the rows they occupy in [s][s], ฯƒ3\sigma_{3} a permutation of the third column of tt, and so on. Then [ฯƒฮป1โขโ€ฆโขฯƒ2โขฯƒ1โ‹…t]=[s][\sigma_{\lambda_{1}}\ldots\sigma_{2}\sigma_{1}\cdot t]=[s], and since each ฯƒi\sigma_{i} is just a permutation of column entries, ฯƒ~=ฯƒฮป1โขโ€ฆโขฯƒ2โขฯƒ1โˆˆCโข(t)\widetilde{\sigma}=\sigma_{\lambda_{1}}\ldots\sigma_{2}\sigma_{1}\in C(t). We now compute

Ptโข[s]=โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒ)โข[ฯƒโ‹…s]=\displaystyle P_{t}[s]=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)[\sigma\cdot s]= โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒ)โข[ฯƒโขฯƒ~โ‹…t]\displaystyle\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)[\sigma\widetilde{\sigma% }\cdot t]
=โˆ‘ฯƒโˆˆCโข(t)sgnโข(ฯƒโขฯƒ~โˆ’1)โข[ฯƒโ‹…t]=sgnโข(ฯƒ~)โข๐žt.\displaystyle=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma\widetilde{\sigma}^{-1})% [\sigma\cdot t]=\mathrm{sgn}(\widetilde{\sigma})\mathbf{e}_{t}.

โˆŽ

Proof of the first part of Theoremย 4.17.12.

Let (ฯ€,W)(\pi,W) be a subrepresentation of (ฯ€,๐’ฎฮป)(\pi,{\mathcal{S}}^{\lambda}). Suppose that there exists tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda} and ๐ฐโˆˆW{\bf w}\in W such that Ptโข๐ฐโ‰ 0P_{t}{\bf w}\neq 0. Then Ptโข๐ฐ=ฮปโข๐žtP_{t}{\bf w}=\lambda{\bf e}_{t}, with ฮปโ‰ 0\lambda\neq 0. Then ๐žtโˆˆW{\bf e}_{t}\in W, hence

๐’ฎฮป=spanโข{๐žs|sโˆˆ๐˜๐“ฮป}=spanโข{๐žฯƒโ‹…t|ฯƒโˆˆSn}=spanโข{ฯ€โข(ฯƒ)โข๐žt|ฯƒโˆˆSn}โІW,{\mathcal{S}}^{\lambda}=\mathrm{span}\{{\bf e}_{s}\,|\,s\in\mathbf{YT}^{% \lambda}\}=\mathrm{span}\{{\bf e}_{\sigma\cdot t}\,|\,\sigma\in S_{n}\}=% \mathrm{span}\{\pi(\sigma){\bf e}_{t}\,|\,\sigma\in S_{n}\}\subseteq W,

i.e.ย W=๐’ฎฮปW={\mathcal{S}}^{\lambda}.

On the other hand, if Ptโข๐ฐ=0P_{t}{\bf w}=0 for all tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda} and ๐ฐโˆˆW{\bf w}\in W, then

0=โŸจPtโข๐ฐ,[t]โŸฉ=โŸจ๐ฐ,Ptโข[t]โŸฉ=โŸจ๐ฐ,๐žtโŸฉ,\displaystyle 0=\langle P_{t}{\bf w},[t]\rangle=\langle{\bf w},P_{t}[t]\rangle% =\langle{\bf w},{\bf e}_{t}\rangle,

thus WโІ(๐’ฎฮป)โŸ‚W\subseteq({\mathcal{S}}^{\lambda})^{\perp}. Since (๐’ฎฮป)โŸ‚โˆฉ๐’ฎฮป=0({\mathcal{S}}^{\lambda})^{\perp}\cap{\mathcal{S}}^{\lambda}=0, we then have that W=0W=0. โˆŽ

The proof above actually gives the slightly stronger statement:

Theorem 4.18.5.

Let (ฯ€,W)(\pi,W) be a subrepresentation of (ฯ€,โ„ณฮป)(\pi,{\mathcal{M}}^{\lambda}). Then either ๐’ฎฮปโІW{\mathcal{S}}^{\lambda}\subseteq W or WโІ(๐’ฎฮป)โŸ‚W\subseteq({\mathcal{S}}^{\lambda})^{\perp}.

4.18.2. Exercises

.

Problemย 93. Let ฮปโŠขn\lambda\vdash n. Given a Young tableau tโˆˆ๐˜๐“ฮปt\in\mathbf{YT}^{\lambda} and ฯƒโˆˆSn\sigma\in S_{n}, show that Cโข(t)C(t) is a subgroup of SnS_{n} and that

ฯƒโขCโข(t)โขฯƒโˆ’1=Cโข(ฯƒโ‹…t).\sigma C(t)\sigma^{-1}=C(\sigma\cdot t).

Problemย 94. Write out the details of the proof of Theorem 4.18.5.