2.10. Lecture 10

2.10.1. The adjoint representation

Let GG be a linear Lie group and 𝔤\mathfrak{g} be its Lie algebra. Then the adjoint representation Ad\operatorname{Ad} of GG is the action on 𝔤\mathfrak{g} by conjugation. We usually write Adg\operatorname{Ad}_{g} instead of Ad(g)\operatorname{Ad}(g), so that

Adg(Y)=gYg1\operatorname{Ad}_{g}(Y)=gYg^{-1}

for gGg\in G and Y𝔤Y\in\mathfrak{g}. By Proposition 1.3.8(ii), gYg1gYg^{-1} is indeed in 𝔤\mathfrak{g}. Thus the map

Ad:GGL(𝔤);gAdg,\operatorname{Ad}:G\longrightarrow\operatorname{GL}(\mathfrak{g})\ ;\ g% \longmapsto\operatorname{Ad}_{g},

is a Lie group homomorphism.

Remark 2.10.1.

An alternative definition, that works for general Lie groups, is to consider the conjugation by gg map hghg1h\mapsto ghg^{-1} and then take the derivative:

Adg(Y)=ddtgexp(tY)g1|t=0.\operatorname{Ad}_{g}(Y)=\frac{d}{dt}g\exp(tY)g^{-1}|_{t=0}.

The derivative of Ad\operatorname{Ad}, denoted by ad\operatorname{ad}, is called the adjoint representation of the Lie algebra 𝔤\mathfrak{g}. Thus

ad=DAd.\operatorname{ad}=D\operatorname{Ad}.

Again, we write adX\operatorname{ad}_{X} for ad(X)\operatorname{ad}(X), so we have

ad:𝔤End(𝔤)=𝔤𝔩(𝔤);XadX.\operatorname{ad}:\mathfrak{g}\longrightarrow\operatorname{End}(\mathfrak{g})=% \mathfrak{gl}(\mathfrak{g})\ ;\ X\longmapsto\operatorname{ad}_{X}.

By Theorem 1.5.6 we have the formula

Adexp(tX)=exp(tadX)\operatorname{Ad}_{\exp(tX)}=\exp(t\operatorname{ad}_{X})

as elements of GL(𝔤)\operatorname{GL}(\mathfrak{g}).

Theorem 2.10.2.

Let GG and 𝔤\mathfrak{g} be as above and let X,Y𝔤X,Y\in\mathfrak{g}. Then

  1. (i)
    adX(Y)=[X,Y]=XYYX.\operatorname{ad}_{X}(Y)=[X,Y]=XY-YX.
  2. (ii)

    The map ad\operatorname{ad} is a Lie algebra homomorphism, so that

    ad[X,Y]=[adX,adY].\operatorname{ad}_{[X,Y]}=[\operatorname{ad}_{X},\operatorname{ad}_{Y}].

    Thus, for all Z𝔤Z\in\mathfrak{g},

    ad[X,Y](Z)=[adX,adY](Z)=adX(adY(Z))adY(adX(Z)).\operatorname{ad}_{[X,Y]}(Z)=[\operatorname{ad}_{X},\operatorname{ad}_{Y}](Z)=% \operatorname{ad}_{X}(\operatorname{ad}_{Y}(Z))-\operatorname{ad}_{Y}(% \operatorname{ad}_{X}(Z)).
Proof.

.

  1. (i)

    Since Adexp(tX)(Y)=exp(tX)Yexp(tX)\operatorname{Ad}_{\exp(tX)}(Y)=\exp(tX)Y\exp(-tX), taking the differential at t=0t=0, we get

    adX(Y)=XYYX=[X,Y].\operatorname{ad}_{X}(Y)=XY-YX=[X,Y].
  2. (ii)

    The map ad\operatorname{ad} is a Lie algebra homomorphism because it is the differential of a Lie group homomorphism, Theorem 1.5.6(iii).

Remark 2.10.3.

This explains the origin of the Jacobi identity:

[adX,adY](Z)\displaystyle[\operatorname{ad}_{X},\operatorname{ad}_{Y}](Z) =adX(adY(Z))adY(adX(Z))\displaystyle=\operatorname{ad}_{X}(\operatorname{ad}_{Y}(Z))-\operatorname{ad% }_{Y}(\operatorname{ad}_{X}(Z))
=[X,[Y,Z]][Y,[X,Z]]\displaystyle=[X,[Y,Z]]-[Y,[X,Z]]
=[X,[Y,Z]]+[Y,[Z,X]],\displaystyle=[X,[Y,Z]]+[Y,[Z,X]],

while

ad[X,Y](Z)\displaystyle\operatorname{ad}_{[X,Y]}(Z) =[[X,Y],Z]\displaystyle=[[X,Y],Z]
=[Z,[X,Y]].\displaystyle=-[Z,[X,Y]].

Equating these gives the Jacobi identity.

Remark 2.10.4.

The first formula, adX(Y)=[X,Y]\operatorname{ad}_{X}(Y)=[X,Y], could have been used to define the adjoint representation for any Lie algebra, without reference to Lie groups.

Remark 2.10.5.

Warning! It is very easy to misinterpret some of the formulas concerning the adjoint representation. For example, ad[X,Y]=[adX,adY]\operatorname{ad}_{[X,Y]}=[\operatorname{ad}_{X},\operatorname{ad}_{Y}] does not mean that

ad[X,Y](Z)=[adX(Z),adY(Z)],\operatorname{ad}_{[X,Y]}(Z)=[\operatorname{ad}_{X}(Z),\operatorname{ad}_{Y}(Z% )],

but (as already noted and proved) that

ad[X,Y](Z)=[adX,adY](Z)=adX(adY(Z))adY(adX(Z)).\operatorname{ad}_{[X,Y]}(Z)=[\operatorname{ad}_{X},\operatorname{ad}_{Y}](Z)=% \operatorname{ad}_{X}(\operatorname{ad}_{Y}(Z))-\operatorname{ad}_{Y}(% \operatorname{ad}_{X}(Z)).

Similarly, Adexp(tX)=exp(tadX)\operatorname{Ad}_{\exp(tX)}=\exp(t\operatorname{ad}_{X}) does not mean that exp(tX)Yexp(tX){\exp(tX)}Y\exp(-tX) is equal to exp(t[X,Y])\exp(t[X,Y]) but rather is the identity

exp(tX)Yexp(tX)\displaystyle{\exp(tX)}Y\exp(-tX) =exp(tadX)(Y)\displaystyle=\exp(t\operatorname{ad}_{X})(Y)
=k=0tk(adX)kk!(Y)\displaystyle=\sum_{k=0}^{\infty}\frac{t^{k}(\operatorname{ad}_{X})^{k}}{k!}(Y)
=k=0[X,[X,,[X,Y]]]k!tk.\displaystyle=\sum_{k=0}^{\infty}\frac{[X,[X,\dots,[X,Y]]\ldots]}{k!}t^{k}.
Proposition 2.10.6.

If GG is abelian, so is 𝔤\mathfrak{g}. If, moreover, GG is connected, then the converse holds.

Proof.

Suppose that GG is abelian. Then, for all gGg\in G and Y𝔤Y\in\mathfrak{g},

gexp(tY)g1=exp(tY).g\exp(tY)g^{-1}=\exp(tY).

Taking the derivative at t=0t=0 we see that gYg1=YgYg^{-1}=Y. Thus Ad\operatorname{Ad} is trivial. Differentiating, we see ad\operatorname{ad} is trivial, so adX=0\operatorname{ad}_{X}=0 for all XX. Thus [X,Y]=0[X,Y]=0 for all X,Y𝔤X,Y\in\mathfrak{g} as required.

Conversely, suppose GG is connected and 𝔤\mathfrak{g} is abelian. Then ad\operatorname{ad} is trivial and, since GG is connected, Ad\operatorname{Ad} is trivial. Thus gYg1=YgYg^{-1}=Y for all gG,Y𝔤g\in G,Y\in\mathfrak{g}. Thus gexp(Y)g1=exp(Y)g\exp(Y)g^{-1}=\exp(Y) for all gGg\in G and all Y𝔤Y\in\mathfrak{g}. Since exp(𝔤)\exp(\mathfrak{g}) generates GG, we see that GG is commutative. ∎

2.10.2. Exercises

.

Problem 26. Prove that, for X,Y𝔤𝔩nX,Y\in\mathfrak{gl}_{n},

(adX)m(Y)=[X,[X,,[X,Y]]]=i=0m(mk)XkY(X)mk.(\operatorname{ad}_{X})^{m}(Y)=[X,[X,\ldots,[X,Y]\ldots]]=\sum_{i=0}^{m}\binom% {m}{k}X^{k}Y(-X)^{m-k}.

Hence give a direct proof that exp(adX)=Adexp(X)\exp(\operatorname{ad}_{X})=\operatorname{Ad}_{\exp(X)}.