1.1. Lecture 1

We fix some notation:

  • kk denotes either the field \mathbb{R} or \mathbb{C};

  • 𝔤𝔩n,k=Mn(k)\mathfrak{gl}_{n,k}=M_{n}(k) is the vector space of all n×nn\times n matrices over kk.

1.1.1. The exponential map

Definition 1.1.1.

Let X𝔤𝔩n,kX\in\mathfrak{gl}_{n,k}. We define

exp(X)=k=0Xkk!.\exp(X)=\sum_{k=0}^{\infty}\frac{X^{k}}{k!}.

This series is convergent for all X𝔤𝔩n,kX\in\mathfrak{gl}_{n,k}. Let ||||||\cdot|| be the matrix norm

X=(i,j|xij|2)1/2.||X||=\left(\sum_{i,j}|x_{ij}|^{2}\right)^{1/2}.

This satisfies the triangle inequality and also XYXY||XY||\leq||X||||Y|| — this can be proved using Cauchy–Schwarz. Then for any X𝔤𝔩n,X\in\mathfrak{gl}_{n,\mathbb{C}} with XM||X||\leq M, we have

exp(X)k=0Xkk!exp(M).||\exp(X)||\leq\sum_{k=0}^{\infty}\frac{||X||^{k}}{k!}\leq\exp(M).

In particular, we see that exp\exp is uniformly absolutely convergent on all compact subsets of 𝔤𝔩n,k\mathfrak{gl}_{n,k}. It follows that exp\exp is a continuous function.

Lemma 1.1.2.

For all X,Y𝔤𝔩n,kX,Y\in\mathfrak{gl}_{n,k}, s,tks,t\in k and gGLn(k)g\in\operatorname{GL}_{n}(k), we have:

  1. (i)

    exp(0)=Id\exp(0)=\operatorname{Id}.

  2. (ii)

    exp(X+Y)=exp(X)exp(Y)\exp(X+Y)=\exp(X)\exp(Y) if XY=YXXY=YX. (This is NOT true in general).

  3. (iii)

    exp(X)\exp(X) is invertible, with inverse exp(X)\exp(-X).

  4. (iv)

    exp(sX)exp(tX)=exp((s+t)X)\exp(sX)\exp(tX)=\exp((s+t)X).

  5. (v)

    gexp(X)g1=exp(gXg1)g\exp(X)g^{-1}=\exp(gXg^{-1}).

Proof.

The first point is obvious. Let’s prove (ii) from which (iii) and (iv) follow. By definition,

exp(X+Y)\displaystyle\exp(X+Y) =k=0(X+Y)kk!\displaystyle=\sum_{k=0}^{\infty}\frac{(X+Y)^{k}}{k!}
=k=0l=0k(kl)XlYklk!\displaystyle=\sum_{k=0}^{\infty}\sum_{l=0}^{k}\frac{\binom{k}{l}X^{l}Y^{k-l}}% {k!} (using that XX and YY commute!)
=k=0l=0kXlYkll!(kl)!\displaystyle=\sum_{k=0}^{\infty}\sum_{l=0}^{k}\frac{X^{l}Y^{k-l}}{l!(k-l)!}
=(l=0Xll!)(j=0Yjj!),\displaystyle=\left(\sum_{l=0}^{\infty}\frac{X^{l}}{l!}\right)\left(\sum_{j=0}% ^{\infty}\frac{Y^{j}}{j!}\right), (putting j=klj=k-l)

which is equal to the right hand side. Rearranging the sums is valid by absolute convergence. Finally, (v) follows from gXkg1=(gXg1)kgX^{k}g^{-1}=(gXg^{-1})^{k}. ∎

In fact the exponential map is differentiable as a function of XX. For this, recall that a function f:NMf:\mathbb{R}^{N}\rightarrow\mathbb{R}^{M} is differentiable at a point pNp\in\mathbb{R}^{N} if there is a (necessarily unique) linear map Dpf:NMD_{p}f:\mathbb{R}^{N}\to\mathbb{R}^{M} such that

limh0f(p+h)f(p)Dpf(h)h=0,\lim_{h\to 0}\frac{||f(p+h)-f(p)-D_{p}f(h)||}{||h||}=0,

and in this case DpfD_{p}f is called the derivative of ff at pp. (This definition is independent of the choice of norms on N\mathbb{R}^{N} and M\mathbb{R}^{M}).

Proposition 1.1.3.

The exponential map is differentiable at the origin (zero matrix), and its derivative at the origin is the identity map from 𝔤𝔩n,\mathfrak{gl}_{n,\mathbb{C}} to itself.

Proof.

In the above definition we have, N=M=2n2N=M=2n^{2}, f=expf=\exp, p=0p=0, and we claim D0expD_{0}\exp is the identity. Thus we need to show

limX0exp(X)exp(0)XX=limX0exp(X)IdXX=0,\lim\limits_{||X||\to 0}\frac{||\exp(X)-\exp(0)-X||}{||X||}=\lim\limits_{||X||% \to 0}\frac{||\exp(X)-\operatorname{Id}-X||}{||X||}=0,

which follows from the definition of the exponential map. Indeed,

exp(X)IdXX=k=2Xkk!XXk=0Xk(k+2)!<XeX,\frac{||\exp(X)-\operatorname{Id}-X||}{||X||}=\frac{||\sum_{k=2}^{\infty}\frac% {X^{k}}{k!}||}{||X||}\leq||X||\cdot\sum_{k=0}^{\infty}\frac{||X||^{k}}{(k+2)!}% <||X||e^{||X||},

which tends to zero as X0||X||\to 0. ∎

Remark 1.1.4.

In fact, the exponential function has derivatives to all orders at all points; this follows from the fact that it is given by power series that converge absolutely at all points and all of whose (formal) derivatives also converge absolutely at all points.

By the inverse function theorem, it follows from the remark that

Corollary 1.1.5.

The exponential map is a local diffeomorphism at 0: there exist neighbourhoods U0𝔤𝔩n,kU_{0}\subseteq\mathfrak{gl}_{n,k} containing 0 and V0GLn(k)V_{0}\subseteq\operatorname{GL}_{n}(k) containing Id\operatorname{Id} such that exp|U0\exp|_{U_{0}} is a smooth homeomorphism onto V0V_{0} with smooth inverse.

Remark 1.1.6.

In fact we can take V0={XGLn()|XId<1}V_{0}=\{X\in\operatorname{GL}_{n}(\mathbb{C})\,|\,||X-\operatorname{Id}||<1\}. The inverse of exp\exp in this neighbourhood is

log(X)=k=0(1)k(XId)k+1k+1,\log(X)=\sum_{k=0}^{\infty}(-1)^{k}\frac{(X-\operatorname{Id})^{k+1}}{k+1},

which is convergent when XId<1||X-\operatorname{Id}||<1.

Of course, exp\exp is not injective in general. For example, exp(2πik)=1\exp(2\pi ik)=1 for kk\in\mathbb{Z}.

1.1.2. Exercises

.

Problem 1.

  1. (a)

    Compute exp(X)\exp(X) for XX equal to (t00s)\begin{pmatrix}t&0\\ 0&s\end{pmatrix}, (0tt0)\begin{pmatrix}0&t\\ -t&0\end{pmatrix}, and (0tt0)\begin{pmatrix}0&t\\ t&0\end{pmatrix} (where s,ts,t\in\mathbb{R}).

  2. (b)

    Let Ea,bE_{a,b} be the elementary n×nn\times n matrix with 11 in the (a,b)(a,b)-entry and 0 elsewhere. Compute exp(tEa,b)\exp(tE_{a,b}) for aba\neq b and a=ba=b.

Problem 2. Show that

exp(tX)exp(tY)=exp(t(X+Y)+t22[X,Y]+O(t3))\exp(tX)\exp(tY)=\exp\left(t(X+Y)+\frac{t^{2}}{2}[X,Y]+O(t^{3})\right)

as t0t\to 0, where

[X,Y]=XYYX.[X,Y]=XY-YX.