1.4. Lecture 4

1.4.1. Lie algebras

There are two ways one can introduce Lie algebras; either as an axiomatic definition or by deriving them from Lie groups (which is where they get their name). We choose the former.

Definition 1.4.1.

A Lie algebra 𝔤\mathfrak{g} over a field kk is a kk-vector space together with a bilinear map (Lie bracket)

[,]:𝔤×𝔤𝔤[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\longrightarrow\mathfrak{g}

that satisfies the following properties.

  1. (i)

    It is alternating: [Y,X]=[X,Y][Y,X]=-[X,Y] for all X,Y𝔤X,Y\in\mathfrak{g}.

  2. (ii)

    The Jacobi identity holds:

    [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0

    for all X,Y,Z𝔤X,Y,Z\in\mathfrak{g}.

We will now proceed by investigating the motivating example (which is also the source of the Lie in the name Lie algebra).

Theorem 1.4.2.

Let GG be a (linear) Lie group. Then 𝔤\mathfrak{g} is a real Lie algebra with Lie bracket given by

[X,Y]=XYYX.[X,Y]=XY-YX.
Proof.

By Proposition 1.3.8(i), 𝔤\mathfrak{g} is a real vector space. By (iii) of the same result [X,Y]𝔤[X,Y]\in\mathfrak{g} so it remains to show the bracket is bilinear and the two axioms are satisfied by it. This is left as an exercise (Problem 1.4.2). ∎

We call 𝔤\mathfrak{g} the Lie algebra of GG (also sometimes denoted Lie(G)\operatorname{Lie}(G)) and define the dimension of the Lie group GG to be the dimension of 𝔤\mathfrak{g}. We now compute the Lie algebras of many of the groups that we are interested in:

Proposition 1.4.3.

The Lie algebras of GLn(k)\operatorname{GL}_{n}(k), SLn(k)\operatorname{SL}_{n}(k), O(n)\operatorname{O}(n), SO(n)\mathrm{SO}(n), U(n)\operatorname{U}(n), and SU(n)\mathrm{SU}(n) are given by

  1. (i)

    Lie(GLn(k))=𝔤𝔩n,k\operatorname{Lie}(\operatorname{GL}_{n}(k))=\mathfrak{gl}_{n,k} with dimk𝔤𝔩n,k=n2\dim_{k}\mathfrak{gl}_{n,k}=n^{2};

  2. (ii)

    Lie(SLn(k))=𝔰𝔩n,k={X𝔤𝔩n,k|tr(X)=0}\operatorname{Lie}(\operatorname{SL}_{n}(k))=\mathfrak{sl}_{n,k}=\{X\in% \mathfrak{gl}_{n,k}\,|\,\operatorname{tr}(X)=0\}, the traceless matrices, with dimk𝔰𝔩n,k=n21\dim_{k}\mathfrak{sl}_{n,k}=n^{2}-1;

  3. (iii)

    Lie(O(n))=𝔬n=Lie(SO(n))=𝔰𝔬n={X𝔤𝔩n,|X+XT=0}\operatorname{Lie}(\operatorname{O}(n))=\mathfrak{o}_{n}=\operatorname{Lie}(% \mathrm{SO}(n))=\mathfrak{so}_{n}=\{X\in\mathfrak{gl}_{n,\mathbb{R}}\,|\,X+X^{% T}=0\}, the skew symmetric real matrices, with dim𝔬n=dim𝔰𝔬n=n(n1)2\dim_{\mathbb{R}}\mathfrak{o}_{n}=\dim_{\mathbb{R}}\mathfrak{so}_{n}=\frac{n(n% -1)}{2};

  4. (iv)

    Lie(U(n))=𝔲n={X𝔤𝔩n,|X+X=0}\operatorname{Lie}(\operatorname{U}(n))=\mathfrak{u}_{n}=\{X\in\mathfrak{gl}_{% n,\mathbb{C}}\,|\,X+X^{*}=0\}, the skew Hermitian matrices, with dim𝔲n=n2\dim_{\mathbb{R}}\mathfrak{u}_{n}=n^{2};

  5. (v)

    Lie(SU(n))=𝔰𝔲n={X𝔲n|tr(X)=0}\operatorname{Lie}(\mathrm{SU}(n))=\mathfrak{su}_{n}=\{X\in\mathfrak{u}_{n}\,|% \,\operatorname{tr}(X)=0\}, the traceless skew Hermitian matrices, with dim𝔰𝔲n=n21\dim_{\mathbb{R}}\mathfrak{su}_{n}=n^{2}-1.

  6. (vi)

    Lie(Sp(2n))=𝔰𝔭2n={X𝔤𝔩n,|XTJ+JX=0}\operatorname{Lie}(\operatorname{Sp}(2n))=\mathfrak{sp}_{2n}=\{X\in\mathfrak{% gl}_{n,\mathbb{R}}\,|\,X^{T}J+JX=0\} where JJ is the matrix of the alternating bilinear form.

Proof.

0

  1. (i)

    This obvious for k=k=\mathbb{C} and left as an exercise for k=k=\mathbb{R}.

  2. (ii)

    First suppose that tr(X)=0\operatorname{tr}(X)=0. Then detexp(tX)=exptr(tX)=1\det\exp(tX)=\exp\operatorname{tr}(tX)=1 so X𝔰𝔩n,kX\in\mathfrak{sl}_{n,k}. Conversely, if X𝔰𝔩n,KX\in\mathfrak{sl}_{n,K} then 1=detexp(tX)=exp(ttr(X))1=\det\exp(tX)=\exp(t\operatorname{tr}(X)) for all tt; differentiating at t=0t=0 gives tr(X)=0\operatorname{tr}(X)=0 as required.

  3. (iii)

    We need to find all XX such that

    exp(tX)exp(tX)T=exp(tX)exp(tXT)=I\exp(tX)\exp(tX)^{T}=\exp(tX)\exp(tX^{T})=I (1.4.4)

    for all tt. Taking the derivative for both sides with respect to tt, we obtain

    Xexp(tX)exp(tXT)+exp(tX)exp(XT)XT=0.X\exp(tX)\exp(tX^{T})+\exp(tX)\exp(X^{T})X^{T}=0.

    Evaluating at t=0t=0, we get

    X+XT=0.X+X^{T}=0.

    Conversely, if X+XT=0X+X^{T}=0, then clearly equation (1.4.4) holds because

    exp(tX)T=exp(tXT)=exp(tX)=exp(X)1.\exp(tX)^{T}=\exp(tX^{T})=\exp(-tX)=\exp(X)^{-1}.

    For the dimension, notice that XX satisfying X=XTX=-X^{T} is determined by its upper triangular part and that the diagonal entries must be all zeros; as their are n(n1)2\frac{n(n-1)}{2} entries strictly above the diagonal, that is the dimension of 𝔬n\mathfrak{o}_{n}. Since these matrices already have trace zero, we see that 𝔰𝔬n=𝔬n\mathfrak{so}_{n}=\mathfrak{o}_{n}.

The unitary and symplectic Lie algebras can be computed in a similar way. This is an exercise (Problem 1.4.2). ∎

We now give an example of a Lie algebra that does not initially appear to be of the form Lie(G)\operatorname{Lie}(G) for some Lie group GG.

Example 1.4.5.

Let 𝔤=3\mathfrak{g}=\mathbb{R}^{3} and let [𝐯,𝐰]=𝐯×𝐰[{\bf v},{\bf w}]={\bf v}\times{\bf w}. Then this is a Lie algebra (just check the axioms).

In fact, 𝔤𝔰𝔬3\mathfrak{g}\cong\mathfrak{so}_{3}. To see this, send the vector 𝐯{\bf v} to the infinitesimal generator of the one parameter subgroup of SO(3)\mathrm{SO}(3) given by ‘rotating around the axis 𝐯{\bf v} at speed |𝐯||{\bf v}|’.

Definition 1.4.6.

If 𝔤\mathfrak{g} is a Lie algebra, then a Lie subalgebra is a subspace 𝔥𝔤\mathfrak{h}\subseteq\mathfrak{g} that is closed under the Lie bracket.

Proposition 1.4.7.

If GGLn(k)G\subseteq\operatorname{GL}_{n}(k) is a Lie group, then 𝔤\mathfrak{g} is a (real) Lie subalgebra of 𝔤𝔩n,k\mathfrak{gl}_{n,k}.

Proof.

By Proposition 1.3.8(i) and (iii) we have 𝔤𝔤𝔩n,k\mathfrak{g}\in\mathfrak{gl}_{n,k} and 𝔤\mathfrak{g} is closed under the Lie bracket. ∎

Definition 1.4.8.

A Lie algebra 𝔤\mathfrak{g} is called abelian if [X,Y]=0[X,Y]=0 for all X,Y𝔤X,Y\in\mathfrak{g}.

Definition 1.4.9.

The centre of a Lie algebra 𝔤\mathfrak{g} is

Z(𝔤)={Z𝔤|[Z,X]=0 for all X𝔤}.Z(\mathfrak{g})=\{Z\in\mathfrak{g}\,|\,[Z,X]=0\text{ for all }X\in\mathfrak{g}\}.
Lemma 1.4.10.

The centre of a Lie algebra is an abelian Lie subalgebra.

Proof.

This is Exercise 1.4.2. ∎

Definition 1.4.11.

A complex linear Lie group is a closed subgroup of GLn()\operatorname{GL}_{n}(\mathbb{C}) whose Lie algebra is a complex subspace of 𝔤𝔩n,\mathfrak{gl}_{n,\mathbb{C}} (as opposed to just a real subspace).

Note that 𝔲n\mathfrak{u}_{n} and 𝔰𝔲n\mathfrak{su}_{n} are only real Lie algebras and correspondingly U(n)\mathrm{U}(n) and SU(n)\mathrm{SU}(n) are only real Lie groups, even though they consist of complex matrices. On the other hand, 𝔤𝔩n,\mathfrak{gl}_{n,\mathbb{C}} and 𝔰𝔩n,\mathfrak{sl}_{n,\mathbb{C}} are complex Lie algebras, so GLn()\operatorname{GL}_{n}(\mathbb{C}) and SLn()\operatorname{SL}_{n}(\mathbb{C}) are complex Lie groups.

A complex Lie algebra is a \mathbb{C}-vector space with a \mathbb{C}-bilinear Lie bracket satisfying the same axioms as for a Lie algebra. Thus one can show the Lie algebra of a complex Lie group is a complex Lie algebra (since the Lie bracket on 𝔤𝔩n,\mathfrak{gl}_{n,\mathbb{C}} is clearly \mathbb{C}-bilinear).

1.4.2. Exercises

.

Problem 7. Complete the proof of Theorem 1.4.2.

Problem 8. Complete the proof of Proposition 1.4.3, i.e. prove parts (i), (iv), (v) and (vi).

Problem 9. Prove Lemma 1.4.10.

Problem 10. Let Ip,q=(IdpIdq)I_{p,q}=\begin{pmatrix}\operatorname{Id}_{p}&\\ &-\operatorname{Id}_{q}\end{pmatrix}, where Idk\operatorname{Id}_{k} denotes the identity matrix of size kk. Let n=p+qn=p+q. Let

O(p,q)={gGLn()|gIp,qgT=Ip,q}\operatorname{O}(p,q)=\{g\in\operatorname{GL}_{n}(\mathbb{R})\,|\,gI_{p,q}g^{T% }=I_{p,q}\}

be the orthogonal group of signature (p,q)(p,q). Let SO(p,q)=O(p,q)SLn()\mathrm{SO}(p,q)=\operatorname{O}(p,q)\cap\operatorname{SL}_{n}(\mathbb{R}). We let 𝔬p,q\mathfrak{o}_{p,q} and 𝔰𝔬p,q\mathfrak{so}_{p,q} be their Lie algebras.

Show that the Lie algebra 𝔬p,q\mathfrak{o}_{p,q} is given by

𝔬(p,q)={XMn()|XIp,q+Ip,qXT=0}\mathfrak{o}(p,q)=\{X\in M_{n}(\mathbb{R})\,|\,XI_{p,q}+I_{p,q}X^{T}=0\}

and that 𝔰𝔬p,q=𝔬p,q\mathfrak{so}_{p,q}=\mathfrak{o}_{p,q}.