3.12. Lecture 12

3.12.1. Weights

We fix the following basis of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}}:

H\displaystyle H =(100โˆ’1),\displaystyle=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix},
X\displaystyle X =(0100),\displaystyle=\begin{pmatrix}0&1\\ 0&0\end{pmatrix},
and
Y\displaystyle Y =(0010).\displaystyle=\begin{pmatrix}0&0\\ 1&0\end{pmatrix}.

These satisfy the following commutation relations, which are fundamental (check them!):

[H,X]\displaystyle[H,X] =2โขX,\displaystyle=2X,
[H,Y]\displaystyle[H,Y] =โˆ’2โขY,\displaystyle=-2Y,
and
[X,Y]\displaystyle[X,Y] =H.\displaystyle=H.

We will decompose representations of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}} into their eigenspaces for the action of HH. The elements XX and YY will then move vectors between these eigenspaces, and this will let us analyse the representation theory of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}}.

Since SL2โก(โ„‚)\operatorname{SL}_{2}(\mathbb{C}) is simply connected, we have

Proposition 3.12.1.

Every finite-dimensional representation of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}} is the derivative of a unique representation of SL2โก(โ„‚)\operatorname{SL}_{2}(\mathbb{C}).

Note that we have not proved this. However, we will use the result freely in what follows. It is possible to give purely algebraic proofs of all the results for which we use the previous proposition, but it is more complicated.

Proposition 3.12.2.

Let (ฯ,V)(\rho,V) be a finite-dimensional complex-linear representation of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}}. Then ฯโข(H)\rho(H) is diagonalisable with integer eigenvalues.

Proof.

By the previous proposition ฯ\rho is the derivative of a representation ฯ~\tilde{\rho} of SL2โก(โ„‚)\operatorname{SL}_{2}(\mathbb{C}). We can identify Uโก(1)\operatorname{U}(1) as a subgroup of SL2โก(โ„‚)\operatorname{SL}_{2}(\mathbb{C}) by the following map:

f:eiโขtโŸผ(eiโขteโˆ’iโขt).f:e^{it}\longmapsto\begin{pmatrix}e^{it}&\\ &e^{-it}\end{pmatrix}.

By Maschkeโ€™s Theorem for Uโก(1)\operatorname{U}(1), Theoremย 2.11.2(ii), ฯโข((eiโขteโˆ’iโขt))\rho\left(\begin{pmatrix}e^{it}&\\ &e^{-it}\end{pmatrix}\right) on VV can be diagonalised. Taking the derivative, we see that ฯโข((i00โˆ’i))\rho\left(\begin{pmatrix}i&0\\ 0&-i\end{pmatrix}\right) can be diagonalised and hence so can ฯโข(H)=โˆ’iโขฯโข((i00โˆ’i))\rho(H)=-i\rho\left(\begin{pmatrix}i&0\\ 0&-i\end{pmatrix}\right).

In fact, the classification of irreducible representations of Uโก(1)\operatorname{U}(1) shows that ฯโข(iโขH)\rho(iH) has eigenvalues in iโขโ„คi\mathbb{Z} and so ฯโข(H)\rho(H) has eigenvalues in โ„ค\mathbb{Z}. โˆŽ

Remark 3.12.3.

The proof of the proposition is a instance of Weylโ€™s unitary trick. We turned the action of HH, which infinitesimally generates a non-compact one-parameter subgroup of SL2โก(โ„‚)\operatorname{SL}_{2}(\mathbb{C}), into the action of the compact group Uโก(1)\operatorname{U}(1) infinitesimally generated by iโขHiH. The action of this compact subgroup can be diagonalised.

The proposition does not hold for an arbitrary representation of the one-dimensional Lie algebra ๐”ฅ=โ„‚โขH\mathfrak{h}=\mathbb{C}H generated by HH. Namely, the map zโขHโ†ฆ(1z01)zH\mapsto\begin{pmatrix}1&z\\ 0&1\end{pmatrix} cannot be diagonalised. It is implicitly the interaction of HH with the other generators XX and YY which makes the proposition work.

Let (ฯ,V)(\rho,V) be a finite-dimensional complex-linear representation of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}}. By Proposition 3.12.2 we get a decomposition

V=โจฮฑVฮฑV=\bigoplus_{\alpha}V_{\alpha} (3.12.4)

where each VฮฑV_{\alpha} is the eigenspace for ฯโข(H)\rho(H) with eigenvalue ฮฑโˆˆโ„‚\alpha\in\mathbb{C}:

Vฮฑ={vโˆˆV|ฯโข(H)โข๐ฏ=ฮฑโข๐ฏ}.V_{\alpha}=\{v\in V\,|\,\rho(H){\bf v}=\alpha{\bf v}\}.
Definition 3.12.5.

.

  1. (i)
    โ€‹

    Each ฮฑโˆˆโ„‚\alpha\in\mathbb{C} occurring in equation (3.12.4) is called a weight (more precisely, an HH-weight) for the representation ฯ\rho.

  2. (ii)
    โ€‹

    Each VฮฑV_{\alpha} is called a weight space for ฯ\rho.

  3. (iii)
    โ€‹

    The non-zero vectors in VฮฑV_{\alpha} are called weight vectors for ฯ\rho.

Note that the weights corresponding to VV form a multiset, in other words a set with repeated elements. We say that a weight has multiplicity nn if it appears in the multiset nn times (in general, the multiplicity of a weight is the dimension of the weight space).

Example 3.12.6.

The set of weights of the zero representation is empty, while the trivial representation has a single weight, 0.

Example 3.12.7.

Let V=โ„‚2V=\mathbb{C}^{2} be the standard representation. Write ๐ž1,๐žโˆ’1{\bf e}_{1},{\bf e}_{-1} for the standard basis. Then Hโข๐ž1=๐ž1H{\bf e}_{1}={\bf e}_{1} and Hโข๐žโˆ’1=โˆ’๐žโˆ’1H{\bf e}_{-1}=-{\bf e}_{-1}. Thus the set of weights of VV is {ยฑ1}\{\pm 1\}.

Example 3.12.8.

We consider the adjoint representation ad\operatorname{ad} of ๐”ค=๐”ฐโข๐”ฉ2,โ„‚\mathfrak{g}=\mathfrak{sl}_{2,\mathbb{C}} on itself. By the commutation relations, we see directly that adH\operatorname{ad}_{H} has eigenvalues 0 ([H,H]=0[H,H]=0), 22 ([H,X]=2โขX[H,X]=2X), and โˆ’2-2 ([H,Y]=โˆ’2โขY[H,Y]=-2Y), so the set of weights is

{โˆ’2,0,2}.\{-2,0,2\}.

The non-zero weights 22 and โˆ’2-2 are called the roots of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}} and their weight spaces are the root spaces ๐”ค2\mathfrak{g}_{2} and ๐”คโˆ’2\mathfrak{g}_{-2}. The weight vectors are called root vectors.

Thus we have the root space decomposition

๐”ฐโข๐”ฉ2,โ„‚\displaystyle\mathfrak{sl}_{2,\mathbb{C}} =๐”ค0โŠ•๐”ค2โŠ•๐”คโˆ’2\displaystyle=\mathfrak{g}_{0}\oplus\mathfrak{g}_{2}\oplus\mathfrak{g}_{-2}
=โŸจHโŸฉโŠ•โŸจXโŸฉโŠ•โŸจYโŸฉ.\displaystyle=\left\langle H\right\rangle\oplus\left\langle X\right\rangle% \oplus\left\langle Y\right\rangle.
Example 3.12.9.

We consider โ„‚2โŠ—โ„‚2\mathbb{C}^{2}\otimes\mathbb{C}^{2} where โ„‚2\mathbb{C}^{2} is the standard representation. Then

Hโข(๐ž1โŠ—๐ž1)=(Hโข๐ž1)โŠ—๐ž1+๐ž1โŠ—Hโข๐ž1=2โข๐ž1โŠ—๐ž1H({\bf e}_{1}\otimes{\bf e}_{1})=(H{\bf e}_{1})\otimes{\bf e}_{1}+{\bf e}_{1}% \otimes H{\bf e}_{1}=2{\bf e}_{1}\otimes{\bf e}_{1}

and similarly

Hโข(๐ž1โŠ—๐žโˆ’1)=Hโข(๐žโˆ’1โŠ—๐ž1)=0,Hโข(๐žโˆ’1โŠ—๐žโˆ’1)=โˆ’2โข๐žโˆ’1โŠ—๐žโˆ’1H({\bf e}_{1}\otimes{\bf e}_{-1})=H({\bf e}_{-1}\otimes{\bf e}_{1})=0,H({\bf e% }_{-1}\otimes{\bf e}_{-1})=-2{\bf e}_{-1}\otimes{\bf e}_{-1}

so that the weights are {โˆ’2,0,0,2}\{-2,0,0,2\}.

Example 3.12.10.

Take V=Symkโก(โ„‚2)V=\operatorname{Sym}^{k}(\mathbb{C}^{2}). As {๐ž1,๐žโˆ’1}\{{\bf e}_{1},{\bf e}_{-1}\} is a basis of the standard representation, a set of basis vectors for Symkโก(โ„‚2)\operatorname{Sym}^{k}(\mathbb{C}^{2}) is

{๐ž1aโข๐žโˆ’1kโˆ’a|โ€‰0โ‰คaโ‰คk}.\{{\bf e}_{1}^{a}{\bf e}_{-1}^{k-a}\,|\,0\leq a\leq k\}.

Given some arbitrary ๐ž1aโข๐žโˆ’1kโˆ’a{\bf e}_{1}^{a}{\bf e}_{-1}^{k-a} in the basis we calculate

Hโข(๐ž1aโข๐žโˆ’1kโˆ’a)\displaystyle H({\bf e}_{1}^{a}{\bf e}_{-1}^{k-a}) =aโข(Hโข๐ž1)โข๐ž1aโˆ’1โข๐žโˆ’1kโˆ’a+bโข(Xโข๐žโˆ’1)โข๐ž1aโข๐žโˆ’1kโˆ’aโˆ’1\displaystyle=a(H{\bf e}_{1}){\bf e}_{1}^{a-1}{\bf e}_{-1}^{k-a}+b(X{\bf e}_{-% 1}){\bf e}_{1}^{a}{\bf e}_{-1}^{{k-a}-1}
=(2โขaโˆ’k)โข๐ž1aโข๐žโˆ’1b.\displaystyle=(2a-k){\bf e}_{1}^{a}{\bf e}_{-1}^{b}.

Thus the weights are:

{โˆ’k,2โˆ’k,4โˆ’k,โ€ฆ,kโˆ’4,kโˆ’2,k}.\{-k,2-k,4-k,\ldots,k-4,k-2,k\}.

We will soon see an explanation for this pattern.

Proposition 3.12.11.

If VV, WW are representations of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}} then:

  1. (i)
    โ€‹

    {weights ofย โขVโŠ—W}={all sums of pairs of weights fromย โขVโขย andย โขW}\{\text{weights of }V\otimes W\}=\{\text{all sums of pairs of weights from }V% \text{ and }W\}.

  2. (ii)
    โ€‹

    {weights ofย โขSymkโก(V)}={sums of unorderedย k-tuples of weights ofย โขV}\{\text{weights of }\operatorname{Sym}^{k}(V)\}=\{\text{sums of unordered $k$-% tuples of weights of }V\}.

  3. (iii)
    โ€‹

    {weights ofย โขโ‹€k(V)}={sums of unordered โ€˜distinctโ€™ย k-tuples of weights ofย โขV}\{\text{weights of }\bigwedge^{k}(V)\}=\{\text{sums of unordered `distinct' $k% $-tuples of weights of }V\}.

Proof.

Let ๐ฏ1,โ€ฆ,๐ฏn{\bf v}_{1},\ldots,{\bf v}_{n} be a basis of weight vectors of VV such that ๐ฏi{\bf v}_{i} has weight ฮฑi\alpha_{i}, and let ๐ฐ1,โ€ฆ,๐ฐm{\bf w}_{1},\ldots,{\bf w}_{m} be similar for WW with weights ฮฒi\beta_{i}. Then

Hโข(๐ฏiโŠ—๐ฐj)\displaystyle H({\bf v}_{i}\otimes{\bf w}_{j}) =(Hโข๐ฏiโŠ—๐ฐj)+๐ฏiโŠ—(Hโข๐ฐj)\displaystyle=(H{\bf v}_{i}\otimes{\bf w}_{j})+{\bf v}_{i}\otimes(H{\bf w}_{j})
=ฮฑiโข๐ฏiโŠ—๐ฐj+๐ฏiโŠ—ฮฒjโข๐ฐj\displaystyle=\alpha_{i}{\bf v}_{i}\otimes{\bf w}_{j}+{\bf v}_{i}\otimes\beta_% {j}{\bf w}_{j}
=(ฮฑi+ฮฒj)โข(๐ฏiโŠ—๐ฐj).\displaystyle=(\alpha_{i}+\beta_{j})({\bf v}_{i}\otimes{\bf w}_{j}).

So {๐ฏiโŠ—๐ฐj}\{{\bf v}_{i}\otimes{\bf w}_{j}\} is a basis of VโŠ—WV\otimes W with the given weights. Parts (ii) and (iii) are left as an exercise (Problemย 3.12.2). โˆŽ

Example 3.12.12.

We should illustrate what is meant by โ€˜distinctโ€™: it is โ€˜distinctโ€™ as elements of the multiset. Suppose that the weights of VV are {2,0,0,โˆ’2}\{2,0,0,-2\}. Then to obtain the weights of โ‹€2(V)\bigwedge^{2}(V) we add together unordered, distinct, pairs of these in every possible way, getting:

{2+0,2+0,2+โˆ’2,0+0,0+โˆ’2,0+โˆ’2}={2,2,0,0,โˆ’2,โˆ’2}.\{2+0,2+0,2+-2,0+0,0+-2,0+-2\}=\{2,2,0,0,-2,-2\}.

3.12.2. Exercises

.

Problemย 30. Prove the rest of Propositionย 3.12.11.