3.16. Lecture 16

3.16.1. Harmonic functions

We can use our understanding of the representation theory of SOโข(3)\mathrm{SO}(3) to shed light on the classical theory of spherical harmonics.

We let ๐’ซโ„“\mathcal{P}^{\ell} be the subspace of โ„‚โข[x,y,z]\mathbb{C}[x,y,z] consisting of homogeneous polynomials of degree โ„“\ell. This has an action of SOโข(3)\mathrm{SO}(3) given by

gโ‹…fโข(๐ฑ)=fโข(gTโข๐ฑ),g\cdot f(\mathbf{x})=f(g^{T}\mathbf{x}),

where ๐ฑ=(xyz)\mathbf{x}=\begin{pmatrix}x\\ y\\ z\end{pmatrix} is a vector in โ„‚3\mathbb{C}^{3}. We therefore get a representation of SOโข(3)\mathrm{SO}(3).

Lemma 3.16.1.

The elements Jx,JyJ_{x},J_{y}, and JzJ_{z} of SOโข(3)\mathrm{SO}(3) act on ๐’ซโ„“\mathcal{P}^{\ell} according to the following formulae:

Jx\displaystyle J_{x} =zโขโˆ‚โˆ‚yโˆ’yโขโˆ‚โˆ‚z\displaystyle=z\frac{\partial}{\partial y}-y\frac{\partial}{\partial z}
Jy\displaystyle J_{y} =xโขโˆ‚โˆ‚zโˆ’zโขโˆ‚โˆ‚x\displaystyle=x\frac{\partial}{\partial z}-z\frac{\partial}{\partial x}
Jz\displaystyle J_{z} =yโขโˆ‚โˆ‚xโˆ’xโขโˆ‚โˆ‚y.\displaystyle=y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y}.
Proof.

Exercise (Problemย 3.16.2). โˆŽ

It will be useful in what follows to recall

Lemma 3.16.2.

(Eulerโ€™s formula) If ff is a homogeneous polynomial of degree โ„“\ell, then

xโขโˆ‚โˆ‚xโขf+yโขโˆ‚โˆ‚yโขf+zโขโˆ‚โˆ‚zโขf=โ„“โขf.x\frac{\partial}{\partial x}{f}+y\frac{\partial}{\partial y}{f}+z\frac{% \partial}{\partial z}{f}=\ell f.

The representation ๐’ซโ„“\mathcal{P}^{\ell} is not irreducible. Let r2โˆˆโ„‚โข[x,y,z]r^{2}\in\mathbb{C}[x,y,z] be the polynomial

r2=x2+y2+z2.r^{2}=x^{2}+y^{2}+z^{2}.

Note that r2r^{2} is clearly invariant under the action of SOโข(3)\mathrm{SO}(3).

Lemma 3.16.3.

The map ๐’ซโ„“โ†’๐’ซโ„“+2\mathcal{P}^{\ell}\to\mathcal{P}^{\ell+2} defined by

fโŸผr2โขff\longmapsto r^{2}f

is an injective homomorphism of SOโข(3)\mathrm{SO}(3)-representations.

Proof.

We have, for gโˆˆSOโข(3)g\in\mathrm{SO}(3),

gโข(r2โขf)=gโข(r2)โขgโข(f)=r2โขgโข(f)g(r^{2}f)=g(r^{2})g(f)=r^{2}g(f)

as required. โˆŽ

Next, we consider the Laplace operator ฮ”\Delta given by

fโŸผโˆ‚2fโˆ‚x2+โˆ‚2fโˆ‚y2+โˆ‚2fโˆ‚z2.f\longmapsto\frac{\partial^{2}f}{\partial x^{2}}+\frac{\partial^{2}f}{\partial y% ^{2}}+\frac{\partial^{2}f}{\partial z^{2}}.
Lemma 3.16.4.

The Laplace operator ฮ”:๐’ซโ„“โ†’๐’ซโ„“โˆ’2\Delta:\mathcal{P}^{\ell}\to\mathcal{P}^{\ell-2} is an SOโข(3)\mathrm{SO}(3)-homomorphism.

Proof.

We must show that, for g=(giโขj)โˆˆSOโข(3)g=(g_{ij})\in\mathrm{SO}(3),

gโ‹…(ฮ”โขf)=ฮ”โข(gโ‹…f).g\cdot(\Delta f)=\Delta(g\cdot f).

We have

โˆ‚โˆ‚xiโข(gโ‹…f)โข(๐ฑ)=โˆ‘jgiโขjโขโˆ‚fโˆ‚xjโข(gTโขx)\frac{\partial}{\partial x_{i}}(g\cdot f)({\bf x})=\sum_{j}g_{ij}\frac{% \partial f}{\partial x_{j}}(g^{T}x)

and so

โˆ‚โˆ‚xiโขโˆ‚โˆ‚xiโข(gโ‹…f)โข(๐ฑ)=โˆ‘j,kgiโขjโขgiโขkโขโˆ‚โˆ‚xkโขโˆ‚โˆ‚xjโข(gTโขx).\frac{\partial}{\partial x_{i}}\frac{\partial}{\partial x_{i}}(g\cdot f)({\bf x% })=\sum_{j,k}g_{ij}g_{ik}\frac{\partial}{\partial x_{k}}\frac{\partial}{% \partial x_{j}}(g^{T}x).

We sum over ii, for fixed jj and kk:

โˆ‘igiโขjโขgiโขk=ฮดjโขk\sum_{i}g_{ij}g_{ik}=\delta_{jk}

since gg is orthogonal. We therefore obtain

โˆ‘iโˆ‚2โˆ‚xi2โข(gโ‹…f)โข(๐ฑ)=โˆ‘jโˆ‚2โˆ‚xj2โข(f)โข(gTโข๐ฑ),\sum_{i}\frac{\partial^{2}}{\partial x_{i}^{2}}(g\cdot f)({\bf x})=\sum_{j}% \frac{\partial^{2}}{\partial x_{j}^{2}}(f)(g^{T}{\bf x}),

and therefore

ฮ”โข(gโ‹…f)=gโ‹…ฮ”โข(f).\Delta(g\cdot f)=g\cdot\Delta(f).

โˆŽ

An element fโˆˆ๐’ซโ„“f\in\mathcal{P}^{\ell} is harmonic if ฮ”โขf=0\Delta f=0. Since dim(๐’ซโ„“)>dim(๐’ซโ„“โˆ’2)\dim(\mathcal{P}^{\ell})>\dim(\mathcal{P}^{\ell-2}), harmonic polynomials must exist. We write โ„‹โ„“โІ๐’ซโ„“\mathcal{H}^{\ell}\subseteq\mathcal{P}^{\ell} for the space of harmonic polynomials.

Lemma 3.16.5.

On ๐’ซโ„“\mathcal{P}^{\ell}, we have

r2โขฮ”=Jx2+Jy2+Jz2+โ„“2+โ„“.r^{2}\Delta=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}+\ell^{2}+\ell.
Proof.

This is Problemย 3.16.2. โˆŽ

It follows that r2โขฮ”r^{2}\Delta preserves each irreducible subrepresentation of ๐’ซโ„“\mathcal{P}^{\ell} (since Jx,Jy,JzJ_{x},J_{y},J_{z} do). Furthermore, by Schurโ€™s lemma it must act on each irreducible subrepresentation as a scalar. We determine that scalar.

Lemma 3.16.6.

Suppose that VโІ๐’ซโ„“V\subseteq\mathcal{P}^{\ell} is an irreducible subrepresentation with highest weight iโขkik. Then, for all fโˆˆVf\in V,

(r2โขฮ”)โข(f)=(โ„“2+โ„“โˆ’k2โˆ’k)โขf=(โ„“โˆ’k)โข(โ„“+k+1)โขf.(r^{2}\Delta)(f)=(\ell^{2}+\ell-k^{2}-k)f=(\ell-k)(\ell+k+1)f.
Proof.

Since r2โขฮ”r^{2}\Delta is a ๐”ฐโข๐”ฌ3\mathfrak{so}_{3}-homomorphism and VV is irreducible, by Schurโ€™s lemma it acts as a scalar on VV. It therefore suffices to compute the action on a highest weight vector ๐ฏโˆˆV{\bf v}\in V. So Jzโข๐ฏ=iโขkโข๐ฏJ_{z}{\bf v}=ik{\bf v} and (Jxโˆ’iโขJy)โข๐ฏ=0(J_{x}-iJ_{y}){\bf v}=0. It follows that Jz2โข๐ฏ=โˆ’k2โข๐ฏJ_{z}^{2}{\bf v}=-k^{2}{\bf v} and, as

Jx2+Jy2\displaystyle J_{x}^{2}+J_{y}^{2} =(Jx+iโขJy)โข(Jxโˆ’iโขJy)+iโข[Jx,Jy]\displaystyle=(J_{x}+iJ_{y})(J_{x}-iJ_{y})+i[J_{x},J_{y}]
=(Jx+iโขJy)โข(Jxโˆ’iโขJy)+iโขJz,\displaystyle=(J_{x}+iJ_{y})(J_{x}-iJ_{y})+iJ_{z},

we have (Jx2+Jy2)โข๐ฏ=0โข๐ฏโˆ’kโข๐ฏ(J_{x}^{2}+J_{y}^{2}){\bf v}=0{\bf v}-k{\bf v}.

Applying the previous lemma gives the result. โˆŽ

Theorem 3.16.7.

For every โ„“โ‰ฅ0\ell\geq 0,

๐’ซโ„“=โ„‹โ„“โŠ•r2โข๐’ซโ„“โˆ’2.\mathcal{P}^{\ell}=\mathcal{H}^{\ell}\oplus r^{2}\mathcal{P}^{\ell-2}.

The space โ„‹โ„“\mathcal{H}^{\ell} is the irreducible highest weight representation of SOโข(3)\mathrm{SO}(3) of dimension 2โขโ„“+12\ell+1, and the space ๐’ซโ„“\mathcal{P}^{\ell}, as an SOโข(3)\mathrm{SO}(3)-representation, the direct sum of representations of weights iโขโ„“,iโข(โ„“โˆ’2),โ€ฆi\ell,i(\ell-2),\ldots, each occurring with multiplicity one.

Proof.

We use induction on โ„“\ell. The case โ„“=0\ell=0 is clear (we just have the trivial representation). For โ„“=1\ell=1 we only have degree 11 polynomials so again ๐’ซ1=โ„‹1\mathcal{P}^{1}=\mathcal{H}^{1}.

Suppose true for โ„“โˆ’1\ell-1 with โ„“โ‰ฅ2\ell\geq 2. By the previous lemma, the space โ„‹โ„“\mathcal{H}^{\ell} is the sum of all the copies inside ๐’ซโ„“\mathcal{P}^{\ell} of the irreducible representation with with highest weight iโขโ„“i\ell. Since ๐’ซโ„“โˆ’2\mathcal{P}^{\ell-2} does not contain this irreducible representation, by the inductive hypothesis, we have

โ„‹โ„“โˆฉr2โข๐’ซโ„“โˆ’2={0}.\mathcal{H}^{\ell}\cap r^{2}\mathcal{P}^{\ell-2}=\{0\}.

Since, โ„‹โ„“โ‰ 0\mathcal{H}^{\ell}\neq 0 as already discussed, its dimension is a positive multiple of 2โขโ„“+12\ell+1. However, its dimension is at most

dim๐’ซโ„“โˆ’dim๐’ซโ„“โˆ’2=(โ„“+22)โˆ’(โ„“2)=2โขโ„“+1.\dim\mathcal{P}^{\ell}-\dim\mathcal{P}^{\ell-2}=\binom{\ell+2}{2}-\binom{\ell}% {2}=2\ell+1.

It follows that โ„‹โ„“\mathcal{H}^{\ell} is irreducible, and that we have

โ„‹โ„“โŠ•r2โข๐’ซโ„“โˆ’2=๐’ซโ„“.\mathcal{H}^{\ell}\oplus r^{2}\mathcal{P}^{\ell-2}=\mathcal{P}^{\ell}.

The statement about the decomposition into irreducibles follows. โˆŽ

The proof of this theorem shows that

๐’ซโ„“=โ„‹โ„“โŠ•r2โขโ„‹โ„“โˆ’2โŠ•r4โขโ„‹โ„“โˆ’4โขโ€ฆ\mathcal{P}^{\ell}=\mathcal{H}^{\ell}\oplus r^{2}\mathcal{H}^{\ell-2}\oplus r^% {4}\mathcal{H}^{\ell-4}\ldots

so that every polynomial has a unique decomposition as a sum of harmonic polynomials multiplied by powers of r2r^{2}.

We can go further and give nice bases for the โ„‹โ„“\mathcal{H}^{\ell} by taking weight vectors for JzJ_{z}. First, we have

Lemma 3.16.8.

The function (xโˆ’iโขy)โ„“โˆˆ๐’ซโ„“(x-iy)^{\ell}\in\mathcal{P}^{\ell} is a highest weight vector of weight iโขโ„“i\ell.

Proof.

This is Problemย 3.16.2(a). โˆŽ

We then obtain a weight basis by repeatedly applying the lowering operator

Jx+iโขJy=(iโขxโˆ’y)โขโˆ‚โˆ‚z+zโข(โˆ‚โˆ‚yโˆ’iโขโˆ‚โˆ‚x).J_{x}+iJ_{y}=(ix-y)\frac{\partial}{\partial z}{}+z(\frac{\partial}{\partial y}% {}-i\frac{\partial}{\partial x}{}).

The functions thus obtained are known as โ€™spherical harmonicsโ€™ (at least, up to normalisation), and give a particularly nice basis for the space of functions on the sphere S2โІโ„3S^{2}\subseteq\mathbb{R}^{3}. The decomposition of a function into spherical harmonics is analogous to the Fourier decomposition of a function on the unit circle.

Example 3.16.9.

If โ„“=1\ell=1, then ๐’ซโ„“=โ„‹โ„“\mathcal{P}^{\ell}=\mathcal{H}^{\ell}, and the weight vectors are

x+iโขy,z,xโˆ’iโขy.x+iy,z,x-iy.

If โ„“=2\ell=2, a basis of โ„‹โ„“\mathcal{H}^{\ell} made up of weight vectors is

(xโˆ’iโขy)2,zโข(xโˆ’iโขy),x2+y2โˆ’2โขz2,zโข(x+iโขy),(x+iโขy)2.(x-iy)^{2},z(x-iy),x^{2}+y^{2}-2z^{2},z(x+iy),(x+iy)^{2}.

3.16.2. Exercises

0

Problemย 41. Prove that the action of A=(aiโขj)โˆˆ๐”ฐโข๐”ฌ3A=(a_{ij})\in\mathfrak{so}_{3} is given by

โˆ‘i,jaiโขjโขxiโขโˆ‚โˆ‚xj\sum_{i,j}a_{ij}x_{i}\frac{\partial}{\partial x_{j}}

by considering

ddโขtโขfโข(expโก(tโขAT)โข๐ฑ)=ddโขtโขfโข((Id+tโขAT)โข๐ฑ)\frac{d}{dt}f(\exp(tA^{T})\mathbf{x})=\frac{d}{dt}f((\operatorname{Id}+tA^{T})% \mathbf{x})

at t=0t=0 (where we rewrite x,y,zx,y,z as x1,x2,x3x_{1},x_{2},x_{3}). Thus prove Lemmaย 3.16.1.

Problemย 42.

  1. (a)
    โ€‹

    Verify the formula

    r2โขฮ”=Jx2+Jy2+Jz2+โ„“2+โ„“r^{2}\Delta=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}+\ell^{2}+\ell

    as operators on ๐’ซโ„“\mathcal{P}^{\ell}.

  2. (b)
    โ€‹

    Find the image of the Casimir element from problem 3.13.3 under our isomorphism ๐”ฐโข๐”ฉ2,โ„‚โ†’๐”ฐโข๐”ฌ3,โ„‚\mathfrak{sl}_{2,\mathbb{C}}\to\mathfrak{so}_{3,\mathbb{C}}, and compare to part (a).

Problemย 43. Let โ„“โ‰ฅ1\ell\geq 1.

  1. (a)
    โ€‹

    Verify that (xโˆ’iโขy)โ„“(x-iy)^{\ell} is a highest weight vector in โ„‹โ„“\mathcal{H}^{\ell}.

  2. (b)
    โ€‹

    By applying the lowering operator, find weight vectors of weights iโข(โ„“โˆ’1)i(\ell-1) and iโข(โ„“โˆ’2)i(\ell-2).

  3. (c)
    โ€‹

    Find a basis of weight vectors in โ„‹โ„“\mathcal{H}^{\ell} when โ„“=1\ell=1 and โ„“=2\ell=2 (i.e.ย verify Example 3.16.9).

Problemย 44.

  1. (a)
    โ€‹

    Prove that, for fโˆˆ๐’ซโ„“f\in\mathcal{P}^{\ell},

    ฮ”โข(r2โขf)=r2โขฮ”โข(f)+2โข(2โขโ„“+3)โขf.\Delta(r^{2}f)=r^{2}\Delta(f)+2(2\ell+3)f.
  2. (b)
    โ€‹

    Find a similar formula for

    ฮ”โข(r2โขkโขf)โˆ’r2โขkโขฮ”โข(f).\Delta(r^{2k}f)-r^{2k}\Delta(f).
  3. (c)
    โ€‹

    Use this to give another proof that

    โ„‹โ„“โˆฉr2โข๐’ซโ„“โˆ’2={0}.\mathcal{H}^{\ell}\cap r^{2}\mathcal{P}^{\ell-2}=\{0\}.

    (Hint: if ff is in the intersection, let f=r2โขkโขgf=r^{2k}g, gg not divisible by r2r^{2}).

Problemย 45.

  1. (a)
    โ€‹

    Let VV be the standard โ€” three-dimensional โ€” representation of ๐”ฐโข๐”ฌ3\mathfrak{so}_{3}. Find a basis of weight vectors for Sym2โก(V)\operatorname{Sym}^{2}(V), and decompose it into irreducible subrepresentations.

  2. (b)
    โ€‹

    Let โ„‹2\mathcal{H}^{2} be the five-dimensional representation of SOโข(3)\mathrm{SO}(3). Decompose โ„‹2โŠ—โ„‹2\mathcal{H}^{2}\otimes\mathcal{H}^{2} into irreducible representations.