4.17. Lecture 17

4.17.1. The Lie algebra ๐”ฐโข๐”ฉ3,โ„‚\mathfrak{sl}_{3,\mathbb{C}}

We study the Lie algebra

๐”ค=๐”ฐโข๐”ฉ3,โ„‚={Xโˆˆ๐”คโข๐”ฉ3,โ„‚|trโก(X)=0},\mathfrak{g}=\mathfrak{sl}_{3,\mathbb{C}}=\{X\in\mathfrak{gl}_{3,\mathbb{C}}\,% |\,\operatorname{tr}(X)=0\},

of traceless 3ร—33\times 3 matrices. It has dimension 88. We first need to find the analogue of the standard basis H,X,YH,X,Y of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}}. We denote by EiโขjE_{ij} the matrix with a 11 in row ii and column jj , and 0 elsewhere. Then Eiโขjโˆˆ๐”ฐโข๐”ฉ3,โ„‚E_{ij}\in\mathfrak{sl}_{3,\mathbb{C}} if and only if iโ‰ ji\neq j. The analogue of HH will be the entire subalgebra of diagonal matrices.

Proposition 4.17.1.

The set ๐”ฅโІ๐”ค\mathfrak{h}\subseteq\mathfrak{g}, given by

๐”ฅ={(a1a2a3)|a1+a2+a3=0,}.\mathfrak{h}=\left\{\begin{pmatrix}a_{1}&&\\ &a_{2}&\\ &&a_{3}\end{pmatrix}\;\Bigg{|}\;a_{1}+a_{2}+a_{3}=0,\right\}.

is an abelian subalgebra.

Proof.

It is straightforward to see this is a subalgebra as it is closed under scalar multiplication, addition and the Lie bracket. It is abelian as diagonal matrices commute with each other. โˆŽ

We call ๐”ฅ\mathfrak{h} the (standard) Cartan subalgebra of ๐”ค\mathfrak{g}. We pick as a basis of ๐”ฅ\mathfrak{h} the elements

H12=E11โˆ’E22\displaystyle H_{12}=E_{11}-E_{22} =(1โˆ’10)\displaystyle=\begin{pmatrix}1&&\\ &-1&\\ &&0\end{pmatrix}
and
H23=E22โˆ’E33\displaystyle H_{23}=E_{22}-E_{33} =(01โˆ’1),\displaystyle=\begin{pmatrix}0&&\\ &1&\\ &&-1\end{pmatrix},

and also define H13=E11โˆ’E33=H12+H23H_{13}=E_{11}-E_{33}=H_{12}+H_{23}.

Next we consider the adjoint action of ๐”ฅ\mathfrak{h} on ๐”ค\mathfrak{g}, seeking eigenvectors and eigenvalues, i.e.

[(a1a2a3),Eiโขj]=(a1a2a3)โขEiโขjโˆ’Eiโขjโข(a1a2a3)=(aiโˆ’aj)โขEiโขj.\left[\begin{pmatrix}a_{1}&&\\ &a_{2}&\\ &&a_{3}\end{pmatrix},E_{ij}\right]=\begin{pmatrix}a_{1}&&\\ &a_{2}&\\ &&a_{3}\end{pmatrix}E_{ij}-E_{ij}\begin{pmatrix}a_{1}&&\\ &a_{2}&\\ &&a_{3}\end{pmatrix}=(a_{i}-a_{j})E_{ij}.

Thus {Eiโขj|iโ‰ j}โˆช{H12,H23}\{E_{ij}\,|\,i\neq j\}\cup\{H_{12},H_{23}\} is a basis of simultaneous eigenvectors in ๐”ฐโข๐”ฉ3,โ„‚\mathfrak{sl}_{3,\mathbb{C}} for the adjoint action of ๐”ฅ\mathfrak{h}.

4.17.2. Weights

Suppose that (ฯ,V)(\rho,V) is a finite-dimensional complex-linear representation of ๐”ฐโข๐”ฉ3,โ„‚\mathfrak{sl}_{3,\mathbb{C}}. Suppose that ๐ฏโˆˆV{\bf v}\in V is an eigenvector for all ฯโข(H)\rho(H), Hโˆˆ๐”ฅH\in\mathfrak{h} (called a simultaneous eigenvector). Then, for each Hโˆˆ๐”ฅH\in\mathfrak{h}, there is an ฮฑโข(H)โˆˆโ„‚\alpha(H)\in\mathbb{C} such that ฯโข(H)โข๐ฏ=ฮฑโข(H)โขv\rho(H){\bf v}=\alpha(H)v. Since ฯ\rho is complex-linear, ฮฑ\alpha is a complex-linear map ๐”ฅโ†’โ„‚\mathfrak{h}\rightarrow\mathbb{C}. In other words, ฮฑ\alpha is an element of the dual space ๐”ฅโˆ—\mathfrak{h}^{*}. This motivates the following definition:

Definition 4.17.2.

Suppose that (ฯ,V)(\rho,V) is a representation of ๐”ฐโข๐”ฉ3,โ„‚\mathfrak{sl}_{3,\mathbb{C}}. Then a weight vector in VV is ๐ฏโˆˆV{\bf v}\in V such that there is ฮฑโˆˆ๐”ฅโˆ—\alpha\in\mathfrak{h}^{*} (the weight) with:

ฯโข(H)โข๐ฏ=ฮฑโข(H)โข๐ฏ\rho(H){\bf v}=\alpha(H){\bf v}

for all Hโˆˆ๐”ฅH\in\mathfrak{h}.

The weight space of ฮฑ\alpha is

Vฮฑ={vโˆˆV|ฯโข(H)โข๐ฏ=ฮฑโข(H)โข๐ฏโขย for allย Hโˆˆ๐”ฅ}.V_{\alpha}=\{v\in V\,|\,\rho(H){\bf v}=\alpha(H){\bf v}\text{ for all $H\in% \mathfrak{h}$}\}.

On ๐”ฅ\mathfrak{h} we have some โ€˜obviousโ€™ maps Liโˆˆ๐”ฅโˆ—L_{i}\in\mathfrak{h}^{*} given by

Liโข(a1a2a3)=ai.L_{i}\left(\begin{smallmatrix}a_{1}&&\\ &a_{2}&\\ &&a_{3}\end{smallmatrix}\right)=a_{i}.

These span ๐”ฅโˆ—\mathfrak{h}^{*}, subject to the relation11 1 More precisely, ๐”ฅโˆ—\mathfrak{h}^{*} is isomorphic to the quotient of the three dimensional vector space with basis {L1,L2,L3}\{L_{1},L_{2},L_{3}\} by the subspace spanned by L1+L2+L3L_{1}+L_{2}+L_{3}.

L1+L2+L3=0.L_{1}+L_{2}+L_{3}=0.

We compute the weights of some particular representations.

Example 4.17.3.

If V=โ„‚3V=\mathbb{C}^{3} is the standard representation of ๐”ฐโข๐”ฉ3,โ„‚\mathfrak{sl}_{3,\mathbb{C}} (for which ฯโข(A)=A\rho(A)=A for all Aโˆˆ๐”ฐโข๐”ฉ3,โ„‚A\in\mathfrak{sl}_{3,\mathbb{C}}), then the standard basis vectors ๐ž1,๐ž2,๐ž3{\bf e}_{1},{\bf e}_{2},{\bf e}_{3} are all weight vectors:

(a1a2a3)โข๐ži=aiโข๐ži\begin{pmatrix}a_{1}&&\\ &a_{2}&\\ &&a_{3}\end{pmatrix}{\bf e}_{i}=a_{i}{\bf e}_{i}

from which we see that Hโข๐ži=Liโข(H)โข๐žiH{\bf e}_{i}=L_{i}(H){\bf e}_{i} for all Hโˆˆ๐”ฅH\in\mathfrak{h}. Hence ๐ži{\bf e}_{i} is a weight vector with weight LiL_{i}.

Example 4.17.4.

If V=(โ„‚3)โˆ—V=(\mathbb{C}^{3})^{*} is the dual of the standard representation then it has a basis ๐ž1โˆ—,๐ž2โˆ—,๐ž3โˆ—{\bf e}_{1}^{*},{\bf e}_{2}^{*},{\bf e}_{3}^{*} defined by

๐žiโˆ—โข(๐žj)=ฮดiโขj.{\bf e}_{i}^{*}({\bf e}_{j})=\delta_{ij}.

One can show that ๐žiโˆ—{\bf e}_{i}^{*} is a weight vector of weight โˆ’Li-L_{i}, so the weights are โˆ’L1,โˆ’L2,โˆ’L3-L_{1},-L_{2},-L_{3}. See problemย 4.17.3.

Example 4.17.5.

Let V=Sym2โก(โ„‚3)V=\operatorname{Sym}^{2}(\mathbb{C}^{3}) be the symmetric square of the standard representation. The rules for calculating the weights of VV are the same as for ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}} โ€” so, for the symmetric square, we add all unordered pairs of weights of โ„‚3\mathbb{C}^{3}. For details see sectionย 4.18.3 The weights of โ„‚3\mathbb{C}^{3} are {L1,L2,L3}\{L_{1},L_{2},L_{3}\} and so the weights of Sym2โก(โ„‚3)\operatorname{Sym}^{2}(\mathbb{C}^{3}) are

{2โขL1,2โขL2,2โขL3,L1+L2,L2+L3,L1+L3}.\{2L_{1},2L_{2},2L_{3},L_{1}+L_{2},L_{2}+L_{3},L_{1}+L_{3}\}.

Note that, if we wanted, we could also write L1+L2=โˆ’L3L_{1}+L_{2}=-L_{3} etc.

Example 4.17.6.

Let V=๐”คV=\mathfrak{g} with the adjoint representation defined by ฯโข(X)โขY=[X,Y]\rho(X)Y=[X,Y]. As already observed, we have

[H,Eiโขj]=Liโˆ’Lj[H,E_{ij}]=L_{i}-L_{j}

for Hโˆˆ๐”ฅH\in\mathfrak{h} and iโ‰ ji\neq j, while [H,Hโ€ฒ]=0[H,H^{\prime}]=0 for H,Hโ€ฒโˆˆ๐”ฅH,H^{\prime}\in\mathfrak{h}. Thus the weights of the adjoint representation are Liโˆ’LjL_{i}-L_{j} (iโ‰ ji\neq j) and 0. The weight space for 0 is ๐”ฅ\mathfrak{h}, which has dimension two with basis H12H_{12} and H23H_{23}; we say that the weight 0 has multiplicity two in VV. We obtain:

WeightWeight space basis\ldelimโข.20โขmโขmโข\ldelimโข.30โขmโขmโขL1โˆ’L2E12\rdelim}3โˆ—Positive roots\rdelim}2โˆ—Simple rootsL2โˆ’L3E23L1โˆ’L3E13\ldelimโข.30โขmโขmโขL2โˆ’L1E21\rdelim}3โˆ—Negative rootsL3โˆ’L2E32L3โˆ’L1E310H12,H13\begin{array}[h]{c|ccc}\text{Weight}&\text{Weight space basis}&&\\ \cline{1-2}\cr\ldelim.{2}{0mm}\ldelim.{3}{0mm}L_{1}-L_{2}&E_{12}&\rdelim\}{3}{% *}\hbox{\multirowsetup\text{Positive roots}}&\rdelim\}{2}{*}\hbox{% \multirowsetup Simple roots}\\ L_{2}-L_{3}&E_{23}\\ L_{1}-L_{3}&E_{13}&\\ \cline{1-2}\cr\ldelim.{3}{0mm}L_{2}-L_{1}&E_{21}&\rdelim\}{3}{*}\hbox{% \multirowsetup\text{Negative roots}}&\\ L_{3}-L_{2}&E_{32}&\\ L_{3}-L_{1}&E_{31}&\\ \cline{1-2}\cr 0&H_{12},H_{13}&&\end{array}
Definition 4.17.7.

A root of ๐”ค=๐”ฐโข๐”ฉ3,โ„‚\mathfrak{g}=\mathfrak{sl}_{3,\mathbb{C}} is a non-zero weight of the adjoint representation. A root vector is a weight vector of a root, and a root space is the weight space of a root.

In other words, a root ฮฑ\alpha with root vector 0โ‰ Eโˆˆ๐”ค0\neq E\in\mathfrak{g} is a non-zero element ฮฑโˆˆ๐”ฅโˆ—\alpha\in\mathfrak{h}^{*} such that

[H,E]=ฮฑโข(H)โขE.[H,E]=\alpha(H)E.

We write

ฮฆ={ยฑ(L1โˆ’L2),ยฑ(L2โˆ’L3),ยฑ(L1โˆ’L3)}\Phi=\{\pm(L_{1}-L_{2}),\pm(L_{2}-L_{3}),\pm(L_{1}-L_{3})\}

for the set of roots of ๐”ฐโข๐”ฉ3,โ„‚\mathfrak{sl}_{3,\mathbb{C}}. Out of these, we call ฮฆ+={L1โˆ’L2,L2โˆ’L3,L1โˆ’L3}\Phi^{+}=\{L_{1}-L_{2},L_{2}-L_{3},L_{1}-L_{3}\} the positive roots and ฮฆโˆ’={L2โˆ’L1,L3โˆ’L2,L3โˆ’L1}\Phi^{-}=\{L_{2}-L_{1},L_{3}-L_{2},L_{3}-L_{1}\} the negative roots. We write ฮ”={L1โˆ’L2,L2โˆ’L3}\Delta=\{L_{1}-L_{2},L_{2}-L_{3}\}; these are the simple roots. Note that L1โˆ’L3L_{1}-L_{3} is the sum of the two simple roots. We will sometimes write ฮฑiโขj\alpha_{ij} for the root Liโˆ’LjL_{i}-L_{j}.

Finally, we have the root space or Cartan decomposition

๐”ค=๐”ฅโŠ•โจฮฑโˆˆฮฆ๐”คฮฑ,\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{\alpha\in\Phi}\mathfrak{g}_{\alpha},

where the ๐”คฮฑ\mathfrak{g}_{\alpha} are the root spaces, which are all one-dimensional.

4.17.3. Exercises

.

Problemย 46. Verify that

[(a1000a2000a3),Eiโขj]=(aiโˆ’aj)โขEiโขj\left[\begin{pmatrix}a_{1}&0&0\\ 0&a_{2}&0\\ 0&0&a_{3}\end{pmatrix},E_{ij}\right]=(a_{i}-a_{j})E_{ij}

and

[E12,E23]=E13.[E_{12},E_{23}]=E_{13}.

Problemย 47. Work through all the theory in Sectionย 4.17.1 for the case of ๐”ฐโข๐”ฉ2,โ„‚\mathfrak{sl}_{2,\mathbb{C}}. What are the roots and root spaces? What is the relation between the weights (as linear maps on ๐”ฅ\mathfrak{h}) and between the weights defined in section 3?

Problemย 48. Let V=(โ„‚3)โˆ—V=(\mathbb{C}^{3})^{*} be the dual of the standard representation, with basis ๐ž1โˆ—,๐ž2โˆ—,๐ž3โˆ—{\bf e}_{1}^{*},{\bf e}_{2}^{*},{\bf e}_{3}^{*} dual to the standard basis.

  1. (a)
    โ€‹

    Show that the ๐žiโˆ—{\bf e}_{i}^{*} are weight vectors with weights โˆ’Li-L_{i}.

  2. (b)
    โ€‹

    Find the action of each EiโขjE_{ij} on ๐ž3โˆ—{\bf e}_{3}^{*} and deduce that ๐ž3โˆ—{\bf e}_{3}^{*} is a highest weight vector with weight โˆ’L3-L_{3}.