3.14. Lecture 14

3.14.1. Induced representations

Let HGH\leq G be a subgroup. Given a a representation (π,V)(\pi,V) of HH, we will “stitch together” this with the GG-action on G/HG/H to create a representation of GG, which we call the induced representation of (π,V)(\pi,V). This is often denoted IndHG(π,V)\mathrm{Ind}_{H}^{G}(\pi,V) or (π,V)HG(\pi,V)\uparrow_{H}^{G}.

Our definition will depend on a choice of cosets for G/HG/H: let r1,r2,,rnGr_{1},r_{2},\ldots,r_{n}\in G be such that

G=r1Hr2HrnH;G=r_{1}H\sqcup r_{2}H\sqcup\ldots\sqcup r_{n}H;

here n=|G||H|n=\frac{|G|}{|H|}, and the “rr”s stand for representatives. Note that each gGg\in G may be written uniquely as g=rihg=r_{i}h for some representative rir_{i} and hHh\in H.

We use these to describe the GG-action on G/HG/H as follows. Define

j(,):G×{1,2,,n}{1,2,,n},h(,):G×{1,2,,n}Hj(\cdot,\cdot):G\times\{1,2,\ldots,n\}\rightarrow\{1,2,\ldots,n\},\qquad h_{(% \cdot,\cdot)}:G\times\{1,2,\ldots,n\}\rightarrow H

by the formula

gri=rj(g,i)h(g,i)gr_{i}=r_{j(g,i)}h_{(g,i)}

for all gGg\in G and i{1,,n}i\in\{1,\ldots,n\}. These functions are well-defined by uniqueness of the decomposition of GG into HH-cosets.

Lemma 3.14.1.
j(g1g2,i)=j(g1,j(g2,i))\displaystyle j(g_{1}g_{2},i)=j\big{(}g_{1},j(g_{2},i)\big{)}
h(g1g2,i)=h(g1,j(g2,i))h(g2,i)\displaystyle h_{(g_{1}g_{2},i)}=h_{\big{(}g_{1},j(g_{2},i)\big{)}}h_{(g_{2},i)}

for all g1,g2Gg_{1},g_{2}\in G, i{1,,n}i\in\{1,\ldots,n\}.

Proof.

From the definition of j(,)j(\cdot,\cdot) and h(,)h_{(\cdot,\cdot)}, we have

g1g2ri=rj(g1g2,i)h(g1g2,i).g_{1}g_{2}r_{i}=r_{j(g_{1}g_{2},i)}h_{(g_{1}g_{2},i)}.

On the other hand,

g1g2ri=\displaystyle g_{1}g_{2}r_{i}= g1(g2ri)=g1(rj(g2,i)h(g2,i))=(g1rj(g2,i))h(g2,i)\displaystyle g_{1}(g_{2}r_{i})=g_{1}\big{(}r_{j(g_{2},i)}h_{(g_{2},i)}\big{)}% =\big{(}g_{1}r_{j(g_{2},i)}\big{)}h_{(g_{2},i)}
=(rj(g1,j(g2,i))h(g1,j(g2,i)))h(g2,i)=rj(g1,j(g2,i))(h(g1,j(g2,i))h(g2,i)).\displaystyle=\big{(}r_{j\big{(}g_{1},j(g_{2},i)\big{)}}h_{\big{(}g_{1},j(g_{2% },i)\big{)}}\big{)}h_{(g_{2},i)}=r_{j\big{(}g_{1},j(g_{2},i)\big{)}}\big{(}h_{% \big{(}g_{1},j(g_{2},i)\big{)}}h_{(g_{2},i)}\big{)}.

By uniqueness of the decomposition of GG into HH-cosets, we must then have

rj(g1g2,i)=rj(g1,j(g2,i)),h(g1g2,i)=h(g1,j(g2,i))h(g2,i).r_{j(g_{1}g_{2},i)}=r_{j\big{(}g_{1},j(g_{2},i)\big{)}},\quad h_{(g_{1}g_{2},i% )}=h_{\big{(}g_{1},j(g_{2},i)\big{)}}h_{(g_{2},i)}.

Given a representation (π,V)(\pi,V) of HH and choice of coset representatives 𝐫=(r1,r2,,rn){\bf r}=(r_{1},r_{2},\ldots,r_{n}) for G/HG/H, we define a vector space

V𝐫=r1Vr2VrnV,V_{{\bf r}}=r_{1}V\oplus r_{2}V\oplus\ldots\oplus r_{n}V,

with vector space operations

α(i=1nri𝐯i)+β(i=1nri𝐮i):=i=1nri(α𝐯i+β𝐮i).\alpha\left(\sum_{i=1}^{n}r_{i}{\bf v}_{i}\right)+\beta\left(\sum_{i=1}^{n}r_{% i}{\bf u}_{i}\right):=\sum_{i=1}^{n}r_{i}(\alpha{\bf v}_{i}+\beta{\bf u}_{i}).
Proposition 3.14.2.

The induced representation IndHG(π,V):=(IndHGπ,V𝐫)\mathrm{Ind}_{H}^{G}(\pi,V):=\big{(}\mathrm{Ind}_{H}^{G}\pi,V_{{\bf r}}\big{)} defined by extending the map

IndHGπ(g)(ri𝐯):=rj(g,i)π(h(g,i))𝐯\mathrm{Ind}_{H}^{G}\pi(g)\big{(}r_{i}{\bf v}\big{)}:=r_{j(g,i)}\pi(h_{(g,i)})% {\bf v}

linearly to all of V𝐫V_{{\bf r}} (for each gGg\in G) is a representation of GG on V𝐫V_{{\bf r}}.

Proof.

We need to show that IndHGπ(g1g2)=IndHGπ(g1)IndHGπ(g2)\mathrm{Ind}_{H}^{G}\pi(g_{1}g_{2})=\mathrm{Ind}_{H}^{G}\pi(g_{1})\mathrm{Ind}% _{H}^{G}\pi(g_{2}). Let ri𝐯V𝐫r_{i}{\bf v}\in V_{{\bf r}}. Then

IndHGπ(g1)IndHGπ(g2)ri𝐯\displaystyle\mathrm{Ind}_{H}^{G}\pi(g_{1})\mathrm{Ind}_{H}^{G}\pi(g_{2})r_{i}% {\bf v} =IndHGπ(g1)rj(g2,i)π(h(g2,i))𝐯\displaystyle=\mathrm{Ind}_{H}^{G}\pi(g_{1})r_{j(g_{2},i)}\pi(h_{(g_{2},i)}){% \bf v}
=rj(g1,j(g2,i))π(h(g1,j(g2,i)))π(h(g2,i))𝐯\displaystyle=r_{j\big{(}g_{1},j(g_{2},i)\big{)}}\pi\big{(}h_{\big{(}g_{1},j(g% _{2},i)\big{)}}\big{)}\pi(h_{(g_{2},i)}){\bf v}
=rj(g1g2,i)π(h(g1g2,i))𝐯\displaystyle=r_{j(g_{1}g_{2},i)}\pi(h_{(g_{1}g_{2},i)}){\bf v}
=IndHGπ(g1g2)ri𝐯,\displaystyle=\mathrm{Ind}_{H}^{G}\pi(g_{1}g_{2})r_{i}{\bf v},

where the previous lemma was used for the second-to-last equality. ∎

Remark 3.14.3.

We will later see that making a different choice of coset representatives gives rise to an isomorphic representation.

Example 3.14.4.

Let H=r<DnH=\langle r\rangle<D_{n}. Then Dn=ersrD_{n}=e\langle r\rangle\sqcup s\langle r\rangle, and H=CnH=C_{n}. Given a representation (ψj,)(\psi_{j},{\mathbb{C}}), ψj(rk)=e2πijk/n\psi_{j}(r^{k})=e^{2\pi ijk/n}, we consider the induced representation IndHDnψj\mathrm{Ind}_{H}^{D_{n}}\psi_{j} on W=esW=e{\mathbb{C}}\oplus s{\mathbb{C}}: for z,wz,w\in{\mathbb{C}}, we have

IndHDnψj(s)(ez+sw)=sz+ew,\mathrm{Ind}_{H}^{D_{n}}\psi_{j}(s)(ez+sw)=sz+ew,
IndHDnψj(r)(ez+sw)=eψj(r)z+sψj(r1)w=e2πij/nez+e2πij/nsw.\mathrm{Ind}_{H}^{D_{n}}\psi_{j}(r)(ez+sw)=e\psi_{j}(r)z+s\psi_{j}(r^{-1})w=e^% {2\pi ij/n}ez+e^{-2\pi ij/n}sw.

The matrices of these maps with respect to the basis e1e1, s1s1 of WW are then

IndHDnψj(s)=(0110),IndHDnψj(r)=(e2πij/n00e2πij/n),\mathrm{Ind}_{H}^{D_{n}}\psi_{j}(s)=\left(\begin{matrix}0&1\\ 1&0\end{matrix}\right),\qquad\mathrm{Ind}_{H}^{D_{n}}\psi_{j}(r)=\left(\begin{% matrix}e^{2\pi ij/n}&0\\ 0&e^{-2\pi ij/n}\end{matrix}\right),

hence

IndHDn(ψj,)=(ρj,2).\mathrm{Ind}_{H}^{D_{n}}(\psi_{j},{\mathbb{C}})=(\rho_{j},{\mathbb{C}}^{2}).

Note that dimIndHGπ=|G||H|dimπ\operatorname{dim}\mathrm{Ind}_{H}^{G}\pi=\frac{|G|}{|H|}\operatorname{dim}\pi.

Recall that since GG acts on G/HG/H, we have the quasi-regular representation (λ,C(G/H))\big{(}\lambda,C(G/H)\big{)}, where C(G/H)={f:G/H}C(G/H)=\{f:G/H\rightarrow{\mathbb{C}}\},

[λ(g)f](g0H)=f(g1g0H).[\lambda(g)f](g_{0}H)=f(g^{-1}g_{0}H).
Proposition 3.14.5.

(λ,C(G/H))IndHG(triv,)\big{(}\lambda,C(G/H)\big{)}\cong\mathrm{Ind}_{H}^{G}({\mathrm{triv}},{\mathbb% {C}}).

Proof.

We first define T:C(G/H)𝐫=r1rnT:C(G/H)\rightarrow{\mathbb{C}}_{{\bf r}}=r_{1}{\mathbb{C}}\oplus\ldots\oplus r% _{n}{\mathbb{C}} as follows:

T(f):=r1f(r1H)+r2f(r2H)++rnf(rnH).T(f):=r_{1}f(r_{1}H)+r_{2}f(r_{2}H)+\ldots+r_{n}f(r_{n}H).

It is straightforward to verify that this is an invertible linear map, so it remains to show that it is a GG-homomorphism. For gGg\in G and fC(G/H)f\in C(G/H),

IndHGtriv(g)T(f)=IndHGtriv(g)(irif(riH))=irj(g,i)f(riH).\mathrm{Ind}_{H}^{G}{\mathrm{triv}}(g)T(f)=\mathrm{Ind}_{H}^{G}{\mathrm{triv}}% (g)\left(\sum_{i}r_{i}f(r_{i}H)\right)=\sum_{i}r_{j(g,i)}f(r_{i}H).

Now reparameterising the sum with j=j(g,i)j=j(g,i), hence i=j(g1,j(g,i))i=j(g^{-1},j(g,i)) (cf. Lemma 3.14.1), we obtain

IndHGtriv(g)T(f)=jrjf(r(g1,j)H)=jrjf(g1rjH)=T(λ(g)f).\mathrm{Ind}_{H}^{G}{\mathrm{triv}}(g)T(f)=\sum_{j}r_{j}f(r_{(g^{-1},j)}H)=% \sum_{j}r_{j}f(g^{-1}r_{j}H)=T(\lambda(g)f).

Exercise 3.14.2 generalises this type of isomorphism to any induced representation. We conclude with the following important observation about induced representations:

IndHGπ(h)ri𝐯=rj(h,i)π(h(h,i))riπ(h)𝐯!\mathrm{Ind}_{H}^{G}\pi(h)r_{i}{\bf v}=r_{j(h,i)}\pi(h_{(h,i)})\neq r_{i}\pi(h% ){\bf v}!

3.14.2. Exercises

.

Problem 81. Let (π,V)(\pi,V) be a representation of HGH\leq G. Define

Cπ(G,V)={f:GV|f(gh)=π(h1)f(g)gG,hH}.C_{\pi}(G,V)=\{f:G\rightarrow V\,|\,f(gh)=\pi(h^{-1})f(g)\;\forall\;g\in G,\;h% \in H\}.
  1. (a)

    Compute dimCπ(G,V)\operatorname{dim}C_{\pi}(G,V).

  2. (b)

    Show that (λ,Cπ(G,V))\big{(}\lambda,C_{\pi}(G,V)\big{)} is a GG-representation, where as usual [λ(g)f](g)=f(g1g)[\lambda(g)f](g^{\prime})=f(g^{-1}g^{\prime}) for all g,gGg,g^{\prime}\in G.

  3. (c)

    Given a set of representatives 𝐫=r1,,rn{\bf r}=r_{1},\ldots,r_{n}, let T𝐫:Cπ(G,V)V𝐫T_{{\bf r}}:C_{\pi}(G,V)\rightarrow V_{{\bf r}} be the map

    T𝐫(f)=r1f(r1)+r2f(r2)++rnf(rn).T_{{\bf r}}(f)=r_{1}f(r_{1})+r_{2}f(r_{2})+\ldots+r_{n}f(r_{n}).

    Show that T𝐫T_{{\bf r}} is a GG-isomorphism from (λ,Cπ(G,V))\big{(}\lambda,C_{\pi}(G,V)\big{)} to IndHG(π,V)\mathrm{Ind}_{H}^{G}(\pi,V).

Remark 3.14.6.

This shows that the induced representations of (π,V)(\pi,V) for different choices of representatives for G/HG/H give rise to isomorphic representations!