3.15. Lecture 15

3.15.1. Frobenius Reciprocity

Let HH be a subgroup of GG and let (π,V)(\pi,V) be a representation of GG. Recall that we have already defined what we mean by the restriction of (π,V)(\pi,V) to HH, which we initially denoted as (π|H,V)(\pi|_{H},V). It is also often denoted as ResHG(π,G)\operatorname{Res}^{G}_{H}(\pi,G) or (π,V)HG(\pi,V)\downarrow_{H}^{G}. We will now see how restriction pairs with induction in Frobenius Reciprocity.

Theorem 3.15.1 (Frobenius Reciprocity, 1898).

Let (π,V)(\pi,V) be a representation of HGH\leq G. Then for any representation (ρ,W)(\rho,W) of GG, we have

HomG(V𝐫,W)HomH(V,W),\operatorname{Hom}_{G}(V_{{\bf r}},W)\cong\operatorname{Hom}_{H}(V,W),

where (IndHGπ,V𝐫)(\mathrm{Ind}_{H}^{G}\pi,V_{{\bf r}}) is the induced representation of π\pi, and (ρ|H,W)(\rho|_{H},W) is the restricted representation of ρ\rho.

Proof.

We will create linear maps between these spaces, and show that they are inverses of each other. Firstly, define Φ:HomH(V,W)Hom(V𝐫,W)\Phi:\operatorname{Hom}_{H}(V,W)\rightarrow\operatorname{Hom}(V_{{\bf r}},W) by setting

Φ(T)(iri𝐯i):=iρ(ri)T(𝐯i)\Phi(T)\left(\sum_{i}r_{i}{\bf v}_{i}\right):=\sum_{i}\rho(r_{i})T({\bf v}_{i})

for all THomH(V,W)T\in\operatorname{Hom}_{H}(V,W) and iri𝐯iV𝐫\sum_{i}r_{i}{\bf v}_{i}\in V_{{\bf r}}. On the other hand, WLOG we assume that er1He\in r_{1}H (hence r1Hr_{1}\in H), and define Ψ:HomG(V𝐫,W)Hom(V,W)\Psi:\operatorname{Hom}_{G}(V_{{\bf r}},W)\rightarrow\operatorname{Hom}(V,W) by

Ψ(S)𝐯:=ρ(r11)S(r1𝐯)\Psi(S){\bf v}:=\rho(r_{1}^{-1})S(r_{1}{\bf v})

for all SHomG(V𝐫,W)S\in\operatorname{Hom}_{G}(V_{{\bf r}},W) and 𝐯V{\bf v}\in V.

Since they are defined using evaluation, both Φ\Phi and Ψ\Psi are linear, so it remains to verify that:

  • (i)

    Φ(T)\Phi(T) is a GG-homomorphism,

  • (ii)

    Ψ(S)\Psi(S) is an HH-homomorphism,

  • (iii) & (iv)

    they are left/right inverse of each other (iii) .

  1. (i)

    For any gGg\in G, we have

    Φ(T)(IndHGπ(g)ri𝐯)=\displaystyle\Phi(T)\big{(}\mathrm{Ind}_{H}^{G}\pi(g)r_{i}{\bf v}\big{)}= Φ(T)(rj(g,i)π(h(g,i))𝐯)=ρ(rj(g,i))T(π(h(g,i))𝐯)\displaystyle\Phi(T)\big{(}r_{j(g,i)}\pi(h_{(g,i)}){\bf v}\big{)}=\rho\big{(}r% _{j(g,i)}\big{)}T\big{(}\pi(h_{(g,i)}){\bf v}\big{)}
    =ρ(rj(g,i))ρ(h(g,i))T(𝐯)=ρ(rj(g,i)h(g,i))T(𝐯)\displaystyle=\rho\big{(}r_{j(g,i)}\big{)}\rho(h_{(g,i)})T({\bf v})=\rho\big{(% }r_{j(g,i)}h_{(g,i)})T({\bf v})
    =ρ(gri)T(𝐯)=ρ(g)ρ(ri)T(𝐯)=ρ(g)Φ(T)(ri𝐯).\displaystyle=\rho(gr_{i})T({\bf v})=\rho(g)\rho(r_{i})T({\bf v})=\rho(g)\Phi(% T)(r_{i}{\bf v}).
  2. (ii)

    Since r1Hr_{1}\in H, for any hHh\in H, we have

    Ψ(S)π(h)𝐯=\displaystyle\Psi(S)\pi(h){\bf v}= ρ(r11)S(r1π(h)𝐯)=ρ(r1)1S(IndHGπ(r1hr11)r1𝐯)\displaystyle\rho(r_{1}^{-1})S(r_{1}\pi(h){\bf v})=\rho(r_{1})^{-1}S\big{(}% \mathrm{Ind}_{H}^{G}\pi(r_{1}hr_{1}^{-1})r_{1}{\bf v}\big{)}
    =ρ(r11)ρ(r1hr11)S(r1𝐯)=ρ(h)ρ(r11)S(r1𝐯)=π(h)Ψ(S)𝐯.\displaystyle=\rho(r_{1}^{-1})\rho(r_{1}hr_{1}^{-1})S(r_{1}{\bf v})=\rho(h)% \rho(r_{1}^{-1})S(r_{1}{\bf v})=\pi(h)\Psi(S){\bf v}.
  3. (iii)

    For any ri𝐯riVr_{i}{\bf v}\in r_{i}V,

    Φ(Ψ(S))ri𝐯=ρ(ri)Ψ(S)𝐯=ρ(ri)ρ(r11)S(r1𝐯)=S(IndHGπ(rir11)r1𝐯)=S(ri𝐯),\Phi\big{(}\Psi(S)\big{)}r_{i}{\bf v}=\rho(r_{i})\Psi(S){\bf v}=\rho(r_{i})% \rho(r_{1}^{-1})S(r_{1}{\bf v})=S(\mathrm{Ind}_{H}^{G}\pi(r_{i}r_{1}^{-1})r_{1% }{\bf v})=S(r_{i}{\bf v}),

    hence Φ(Ψ(S))=S\Phi(\Psi(S))=S.

  4. (iv)

    For any 𝐯V{\bf v}\in V,

    Ψ(Φ(T))𝐯=ρ(r11)Φ(T)(r1𝐯)=ρ(r11)(ρ(r1)T(𝐯))=T𝐯,\Psi(\Phi(T)){\bf v}=\rho(r_{1}^{-1})\Phi(T)(r_{1}{\bf v})=\rho(r_{1}^{-1})(% \rho(r_{1})T({\bf v}))=T{\bf v},

    hence Ψ(Φ(T))=T\Psi(\Phi(T))=T.

This has a nice application to characters; we first introduce some convenient notation.

Given a representation (π,V)(\pi,V) and a class function fCF(G)f\in CF(G), we write

IndHGχπ:=χIndHGπ,ResHGf:=f|H.\mathrm{Ind}_{H}^{G}\chi_{\pi}:=\chi_{\mathrm{Ind}_{H}^{G}\pi},\qquad% \operatorname{Res}_{H}^{G}f:=f|_{H}.

It is also common to see χπHG\chi_{\pi}\uparrow_{H}^{G} and fHGf\downarrow_{H}^{G}.

Corollary 3.15.2.

Let HGH\leq G. For all fCF(G)f\in CF(G) and finite-dimensional representations (π,V)(\pi,V) of HH,

IndHGχπ,fG=χπ,ResHGfH.\langle\mathrm{Ind}_{H}^{G}\chi_{\pi},f\rangle_{G}=\langle\chi_{\pi},% \operatorname{Res}_{H}^{G}f\rangle_{H}.
Remark 3.15.3.

Let V,WV,W be two inner product spaces. Given A:VWA:V\rightarrow W, we define A:WVA^{*}:W\rightarrow V by the formula

A𝐯,𝐰W=𝐯,A𝐰V𝐯V,𝐰W.\langle A{\bf v},{\bf w}\rangle_{W}=\langle{\bf v},A^{*}{\bf w}\rangle_{V}% \qquad\forall\;{\bf v}\in V,\;{\bf w}\in W.

The map AA^{*} is called the adjoint of AA. Because of this, we say that IndHG\mathrm{Ind}_{H}^{G} is the adjoint of ResHG\operatorname{Res}_{H}^{G}.

Proof.

Since the irreducible characters of GG form an orthonormal basis of CF(G)CF(G), we may write

f=ρIrr(G)f,χρGχρ.f=\sum_{\rho\in\mathrm{Irr}(G)}\langle f,\chi_{\rho}\rangle_{G}\chi_{\rho}.

Then for a representation π\pi of HH, we have

IndHGχπ,fG=ρIrr(G)f,χρG¯IndHGχπ,χρG.\displaystyle\langle\mathrm{Ind}_{H}^{G}\chi_{\pi},f\rangle_{G}=\sum_{\rho\in% \mathrm{Irr}(G)}\overline{\langle f,\chi_{\rho}\rangle_{G}}\langle\mathrm{Ind}% _{H}^{G}\chi_{\pi},\chi_{\rho}\rangle_{G}.

By Lemma 2.9.6 and Theorem 3.15.1,

IndHGχπ,χρG=dim(HomG(V𝐫,Wρ))=dim(HomH(V,Wρ))=χπ,ResHGχρH.\langle\mathrm{Ind}_{H}^{G}\chi_{\pi},\chi_{\rho}\rangle_{G}=\operatorname{dim% }\big{(}\operatorname{Hom}_{G}(V_{{\bf r}},W_{\rho})\big{)}=\operatorname{dim}% \big{(}\operatorname{Hom}_{H}(V,W_{\rho})\big{)}=\langle\chi_{\pi},% \operatorname{Res}_{H}^{G}\chi_{\rho}\rangle_{H}.

Substituting this into the previous identity gives

IndHGχπ,fG=χπ,ρIrr(G)f,χρGResHGχρH=χπ,ResHGfH.\langle\mathrm{Ind}_{H}^{G}\chi_{\pi},f\rangle_{G}=\left\langle\chi_{\pi},\sum% _{\rho\in\mathrm{Irr}(G)}\langle f,\chi_{\rho}\rangle_{G}\operatorname{Res}_{H% }^{G}\chi_{\rho}\right\rangle_{H}=\langle\chi_{\pi},\operatorname{Res}_{H}^{G}% f\rangle_{H}.

Example 3.15.4.

Table 3.2 below shows the irreducible characters ψi\psi_{i} of S4S_{4} and χi\chi_{i} of S3S_{3}.

e(12)(12)(34)(123)(1234)ψ011111ψ111111ψ220211ψ331101ψ431101χ011NA1NAχ111NA1NAχ220NA1NA\begin{array}[]{l|rrrrr}&e&(12)&(12)(34)&(123)&(1234)\\ \hline\cr\psi_{0}&1&1&1&1&1\\ \psi_{1}&1&-1&1&1&-1\\ \psi_{2}&2&0&2&-1&-1\\ \psi_{3}&3&1&-1&0&-1\\ \psi_{4}&3&-1&-1&0&1\\ \hline\cr\hline\cr\chi_{0}&1&1&NA&1&NA\\ \chi_{1}&1&-1&NA&1&NA\\ \chi_{2}&2&0&NA&-1&NA\\ \end{array}
Table 3.2. Characters of S3S_{3} and S4S_{4}

We regard S3S_{3} as the subgroup of S4S_{4} of elements that fix 4, and use Frobenius reciprocity to compute IndS3S4χ2\mathrm{Ind}_{S_{3}}^{S_{4}}\chi_{2}.

For each ii, Frobenius reciprocity implies that

IndS3S4χ2,ψiS4=χ2,ψi|S3S3.\langle\mathrm{Ind}_{S_{3}}^{S_{4}}\chi_{2},\psi_{i}\rangle_{S_{4}}=\langle% \chi_{2},\psi_{i}|_{S_{3}}\rangle_{S_{3}}.

The right hand side is easily seen to be zero for i=0,1i=0,1 and one for i=2,3,4i=2,3,4. We therefore have

IndS3S4χ2=ψ2+ψ3+ψ4.\mathrm{Ind}_{S_{3}}^{S_{4}}\chi_{2}=\psi_{2}+\psi_{3}+\psi_{4}.
Corollary 3.15.5.

Let (π,V)(\pi,V) be a representation of HGH\leq G. The representation (IndHGπ,V𝐫)(\mathrm{Ind}_{H}^{G}\pi,V_{\bf r}) is independent of the choice of 𝐫{\bf r}, up to isomorphism.

Proof.

By Corollary 3.15.2 the character of (IndHGπ,V𝐫)(\mathrm{Ind}_{H}^{G}\pi,V_{\bf r}) is entirely determined by the restrictions of irreducible characters of GG and the character of π\pi. Thus, by Theorem 2.9.7 any choice of 𝐫{\bf r} gives an isomorphic representation. ∎

3.15.2. Exercises

.

Problem 82. For each irreducible representation of S4S_{4}, decompose its induction to S5S_{5} into irreducibles (where S4S_{4} is regarded as the subgroup of elements of S5S_{5} that fix 5{1,,5}5\in\{1,\ldots,5\}).

Problem 83. Let (π,V)(\pi,V) be an irreducible representation of GG and HH a subgroup of GG. Show that (π,V)(\pi,V) isomorphic to a subrepresentation of a representation induced from an irreducible representation of HH.

Problem 84. Let χπ\chi_{\pi} be an irreducible character of HGH\leq G, and write

IndHGχπ=σIrr(G)dσχσ.\mathrm{Ind}^{G}_{H}\chi_{\pi}=\sum_{\sigma\in\mathrm{Irr}(G)}d_{\sigma}\chi_{% \sigma}.

Show that σdσ2[G:H]\sum_{\sigma}d_{\sigma}^{2}\leq[G:H].

Problem 85. Let HH be a subgroup of GG. Show

  1. (a)

    If (π1,V1)(\pi_{1},V_{1}), (π2,V2)(\pi_{2},V_{2}) are representations of HH, then

    IndHG((π1,V1)(π2,V2))IndHG(π1,V1)IndHG(π2,V2).\mathrm{Ind}^{G}_{H}\big{(}(\pi_{1},V_{1})\oplus(\pi_{2},V_{2})\big{)}\cong% \mathrm{Ind}^{G}_{H}(\pi_{1},V_{1})\oplus\mathrm{Ind}^{G}_{H}(\pi_{2},V_{2}).
  2. (b)

    If KHGK\leq H\leq G, and (ρ,U)(\rho,U) is a representation of KK, then

    IndKG(ρ,U)IndHG(IndKH(ρ,U)).\mathrm{Ind}_{K}^{G}(\rho,U)\cong\mathrm{Ind}_{H}^{G}\big{(}\mathrm{Ind}_{K}^{% H}(\rho,U)\big{)}.
  3. (c)

    If (π,V)(\pi,V) is a representation of GG, then

    IndHG(ResHG(π,V))(π,V)IndHG(Id,).\mathrm{Ind}_{H}^{G}\big{(}\operatorname{Res}_{H}^{G}(\pi,V)\big{)}\cong(\pi,V% )\otimes\mathrm{Ind}^{G}_{H}({\,\mathrm{Id}},{\mathbb{C}}).