3.12. Lecture 12

3.12.1. Symmetric and alternating products

We defined the tensor product VVV\otimes V as a quotient (V×V)/U{\mathbb{C}}(V\times V)/U, where the subspace UU is chosen to give the desired linear relations in VVV\otimes V. We will now do something similar to VVV\otimes V, to obtain vector spaces that have even more symmetries.

Definition 3.12.1.

Let U1VVU_{1}\subseteq V\otimes V be the subspace

U1=span{𝐯1𝐯2𝐯2𝐯1|𝐯1,𝐯2V},U_{1}=\mathrm{span}\{{\bf v}_{1}\otimes{\bf v}_{2}-{\bf v}_{2}\otimes{\bf v}_{% 1}\,|\,{\bf v}_{1},{\bf v}_{2}\in V\},

and Sym2(V):=(VV)/U1\mathrm{Sym}^{2}(V):=(V\otimes V)/U_{1}. The vector space Sym2(V)\mathrm{Sym}^{2}(V) is called the (second) symmetric product of VV.

If 𝐯1𝐯2VV{\bf v}_{1}\otimes{\bf v}_{2}\in V\otimes V, then

𝐯1𝐯2+U1=𝐯2𝐯1+(𝐯1𝐯2𝐯2𝐯1)+U1=𝐯2𝐯1+U1.{\bf v}_{1}\otimes{\bf v}_{2}+U_{1}={\bf v}_{2}\otimes{\bf v}_{1}+\big{(}{\bf v% }_{1}\otimes{\bf v}_{2}-{\bf v}_{2}\otimes{\bf v}_{1}\big{)}+U_{1}={\bf v}_{2}% \otimes{\bf v}_{1}+U_{1}. (3.12.2)

Thus, modding out the subspace U1U_{1} enforces the relation “𝐯1𝐯2=𝐯2𝐯1{\bf v}_{1}\otimes{\bf v}_{2}={\bf v}_{2}\otimes{\bf v}_{1}” on VVV\otimes V. We normally write 𝐯1𝐯2{\bf v}_{1}{\bf v}_{2} for the element 𝐯1𝐯2+U1{\bf v}_{1}\otimes{\bf v}_{2}+U_{1} of Sym2(V)\mathrm{Sym}^{2}(V). We have 𝐯1𝐯2=𝐯2𝐯1{\bf v}_{1}{\bf v}_{2}={\bf v}_{2}{\bf v}_{1}, as well as linear relations in both arguments. As a consequence we have that, if 𝐯1,,𝐯n{\bf v}_{1},\ldots,{\bf v}_{n} is a basis of VV then

{𝐯i𝐯j| 1in, 1ji}\{{\bf v}_{i}{\bf v}_{j}\,|\,1\leq i\leq n,\;1\leq j\leq i\}

is a basis of Sym2(V)\mathrm{Sym}^{2}(V). Thus dim(Sym2(V))=n(n+1)2\operatorname{dim}\big{(}\mathrm{Sym}^{2}(V)\big{)}=\frac{n(n+1)}{2}.

In a similar fashion, we will also define a subspace U2U_{2} of VVV\otimes V that enforces the relation “𝐯1𝐯2=𝐯2𝐯1{\bf v}_{1}\otimes{\bf v}_{2}=-{\bf v}_{2}\otimes{\bf v}_{1}” on VVV\otimes V:

Definition 3.12.3.

Let U2VVU_{2}\subseteq V\otimes V be the subspace

U2:=span{𝐯1𝐯2+𝐯2𝐯1|𝐯1,𝐯2V},U_{2}:=\mathrm{span}\{{\bf v}_{1}\otimes{\bf v}_{2}+{\bf v}_{2}\otimes{\bf v}_% {1}\,|\,{\bf v}_{1},{\bf v}_{2}\in V\},

and 2V:=(VV)/U2\bigwedge^{2}V:=(V\otimes V)/U_{2}. The vector space 2(V)\bigwedge^{2}(V) is called the (second) alternating product of VV.

By the same method as the computation 3.12.2 above, we have 𝐯1𝐯2+U2=𝐯2𝐯1+U2{\bf v}_{1}\otimes{\bf v}_{2}+U_{2}=-{\bf v}_{2}\otimes{\bf v}_{1}+U_{2}. We normally write 𝐯1𝐯2{\bf v}_{1}\wedge{\bf v}_{2} for 𝐯1𝐯2+U2{\bf v}_{1}\otimes{\bf v}_{2}+U_{2}; and 𝐯1𝐯2{\bf v}_{1}\wedge{\bf v}_{2} is linear both arguments, and 𝐯1𝐯2=𝐯2𝐯1{\bf v}_{1}\wedge{\bf v}_{2}=-{\bf v}_{2}\wedge{\bf v}_{1}. Thus, if we let 𝐯1,,𝐯n{\bf v}_{1},\ldots,{\bf v}_{n} be a basis of VV, we have

{𝐯i𝐯j| 1in, 1j<i}\{{\bf v}_{i}\wedge{\bf v}_{j}\,|\,1\leq i\leq n,\;1\leq j<i\}

is a basis of 2(V)\bigwedge^{2}(V). Thus dim(2(V))=n(n1)2\operatorname{dim}\big{(}\bigwedge^{2}(V)\big{)}=\frac{n(n-1)}{2}.

We now look at representations on these spaces:

Proposition 3.12.4.

Let (π,V)(\pi,V) be a representation of a group GG. Then (ππ,U1)(\pi\otimes\pi,U_{1}) and (ππ,U2)(\pi\otimes\pi,U_{2}) are subrepresentations of (ππ,VV)(\pi\otimes\pi,V\otimes V), and

(ππ,VV)(Sym2π,Sym2(V))(ππ,2(V)).(\pi\otimes\pi,V\otimes V)\cong\big{(}\mathrm{Sym}^{2}\pi,\mathrm{Sym}^{2}(V)% \big{)}\oplus\big{(}\pi\wedge\pi,\bigwedge\!\!^{2}(V)\big{)}.
Proof.

See Problem 3.12.3 below. ∎

Proposition 3.12.5.

Let (π,V)(\pi,V) be a finite-dimensional representation of a finite group GG. Then for all gGg\in G,

χSym2π(g)=12(χπ(g)2+χπ(g2)),χππ(g)=12(χπ(g)2χπ(g2)).\chi_{\mathrm{Sym}^{2}\pi}(g)=\frac{1}{2}\big{(}\chi_{\pi}(g)^{2}+\chi_{\pi}(g% ^{2})\big{)},\qquad\chi_{\pi\wedge\pi}(g)=\frac{1}{2}\big{(}\chi_{\pi}(g)^{2}-% \chi_{\pi}(g^{2})\big{)}.
Proof.

We only need to prove the first of these identities, the other follows from Proposition 3.12.4 and Proposition 2.7.9 (iii).

Let 𝐯1,,𝐯n{\bf v}_{1},\ldots,{\bf v}_{n} be an eigenbasis of VV for π(g)\pi(g), i.e. π(g)𝐯i=λi𝐯i\pi(g){\bf v}_{i}=\lambda_{i}{\bf v}_{i}. Then

{𝐯i𝐯j| 1in, 1ji}\{{\bf v}_{i}{\bf v}_{j}\,|\,1\leq i\leq n,\;1\leq j\leq i\}

is a basis of Sym2(V)\mathrm{Sym}^{2}(V). This is an eigenbasis for Sym2π(g)\mathrm{Sym}^{2}\pi(g) as

Sym2π(g)𝐯i𝐯j=(λi𝐯i)(λj𝐯j)=(λiλj)𝐯i𝐯j.\mathrm{Sym}^{2}\pi(g){\bf v}_{i}{\bf v}_{j}=(\lambda_{i}{\bf v}_{i})(\lambda_% {j}{\bf v}_{j})=(\lambda_{i}\lambda_{j}){\bf v}_{i}{\bf v}_{j}.

The definition of χSym2π(g)\chi_{\mathrm{Sym}^{2}\pi}(g) gives

χSym2π(g)=i=1nj=1iλiλj.\chi_{\mathrm{Sym}^{2}\pi}(g)=\sum_{i=1}^{n}\sum_{j=1}^{i}\lambda_{i}\lambda_{% j}.

On the other hand,

χπ(g)2=(k=1nλk)2\displaystyle\chi_{\pi}(g)^{2}=\left(\sum_{k=1}^{n}\lambda_{k}\right)^{2} =i=1nλi2+2i=1n1j<iλiλj\displaystyle=\sum_{i=1}^{n}\lambda_{i}^{2}+2\sum_{i=1}^{n}\sum_{1\leq j<i}% \lambda_{i}\lambda_{j}
=χπ(g2)+2(i=1n1jiλiλji=1nλi2)\displaystyle=\chi_{\pi}(g^{2})+2\left(\sum_{i=1}^{n}\sum_{1\leq j\leq i}% \lambda_{i}\lambda_{j}-\sum_{i=1}^{n}\lambda_{i}^{2}\right)
=2χSym2π(g)χπ(g2).\displaystyle=2\chi_{\mathrm{Sym}^{2}\pi}(g)-\chi_{\pi}(g^{2}).

We conclude this section by noting that we can generalise these constructions to higher symmetric and alternating powers Symk(V)\mathrm{Sym}^{k}(V), kV\bigwedge^{k}V for k=3,4,k=3,4,\ldots.

3.12.2. Example: the character table of S5S_{5}

We will now complete the character table of S5S_{5}. The irreducibles we already know are the trivial representation triv{\mathrm{triv}}, the sign representation sgn\operatorname{sgn}, the irreducible permutation representation (π,W0)(\pi,W_{0}), and its twist (sgnπ,W0)(\operatorname{sgn}\pi,W_{0}), as before. So we can put these entries into the table:

e(12)(12)(34)(123)(123)(45)(1234)(12345)1101520203024triv1111111sgn1111111π4201101sgnπ4201101\begin{array}[h]{c|rrrrrrr}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ &1&10&15&20&20&30&24\\ \hline\cr{\mathrm{triv}}&1&1&1&1&1&1&1\\ \operatorname{sgn}&1&-1&1&1&-1&-1&1\\ \pi&4&2&0&1&-1&0&-1\\ \operatorname{sgn}\pi&4&-2&0&1&1&0&-1\end{array}

We then try ππ\pi\wedge\pi, which has character as shown below. This is an irreducible character (as it has norm one).

e(12)(12)(34)(123)(123)(45)(1234)(12345)1101520203024ππ6020001\begin{array}[h]{c|rrrrrrr}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ &1&10&15&20&20&30&24\\ \hline\cr\pi\wedge\pi&6&0&-2&0&0&0&1\end{array}

A natural next step could be to try sgn(ππ)\operatorname{sgn}(\pi\wedge\pi), but it turns out this is isomorphic to ππ\pi\wedge\pi. We can also try Sym2π\operatorname{Sym}^{2}\pi, which has character below; it isn’t irreducible.

e(12)(12)(34)(123)(123)(45)(1234)(12345)1101520203024Sym2π10421100\begin{array}[h]{c|rrrrrrr}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ &1&10&15&20&20&30&24\\ \hline\cr\operatorname{Sym}^{2}\pi&10&4&2&1&1&0&0\end{array}

By taking inner products with the characters we’ve already found, we see that

Sym2πtrivπρ,\mathrm{Sym}^{2}\pi\cong{\mathrm{triv}}\oplus\pi\oplus\rho,

where ρ\rho is another irreducible representation. Finally, we get one more from twisting ρ\rho by sgn\operatorname{sgn}.

e(12)(12)(34)(123)(123)(45)(1234)(12345)1101520203024ρ5111110sgnρ5111110\begin{array}[h]{c|rrrrrrr}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ &1&10&15&20&20&30&24\\ \hline\cr\rho&5&1&1&-1&1&-1&0\\ \operatorname{sgn}\rho&5&-1&1&-1&-1&1&0\end{array}

This gives all of the irreducible characters, which we assemble into Table 3.1.

e(12)(12)(34)(123)(123)(45)(1234)(12345)1101520203024triv1111111sgn1111111π4201101sgnπ4201101ππ6020001ρ5111110sgnρ5111110\begin{array}[]{c|ccccccc|}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ &1&10&15&20&20&30&24\\ \hline\cr{\mathrm{triv}}&1&1&1&1&1&1&1\\ \operatorname{sgn}&1&-1&1&1&-1&-1&1\\ \pi&4&2&0&1&-1&0&-1\\ \operatorname{sgn}\pi&4&-2&0&1&1&0&-1\\ \pi\wedge\pi&6&0&-2&0&0&0&1\\ \rho&5&1&1&-1&1&-1&0\\ \operatorname{sgn}\rho&5&-1&1&-1&-1&1&0\\ \end{array}
Table 3.1. Character table of S5S_{5}

3.12.3. Exercises

.

Problem 72. Let (π,V)(\pi,V) be a finite-dimensional representation of a finite group GG. Define U1,U2VVU_{1},U_{2}\subseteq V\otimes V by

U1=span{𝐯1𝐯2𝐯2𝐯1|𝐯1,𝐯2V},U2=span{𝐯1𝐯2+𝐯2𝐯1|𝐯1,𝐯2V}U_{1}=\mathrm{span}\{{\bf v}_{1}\otimes{\bf v}_{2}-{\bf v}_{2}\otimes{\bf v}_{% 1}\,|\,{\bf v}_{1},{\bf v}_{2}\in V\},\quad U_{2}=\mathrm{span}\{{\bf v}_{1}% \otimes{\bf v}_{2}+{\bf v}_{2}\otimes{\bf v}_{1}\,|\,{\bf v}_{1},{\bf v}_{2}% \in V\}

Show that (ππ,U1)(\pi\otimes\pi,U_{1}) and (ππ,U2)(\pi\otimes\pi,U_{2}) are subrepresentations of (ππ,VV)(\pi\otimes\pi,V\otimes V) and thus show that

(ππ,VV)(Sym2π,Sym2(V))(ππ,2V).(\pi\otimes\pi,V\otimes V)\cong\big{(}\mathrm{Sym}^{2}\pi,\mathrm{Sym}^{2}(V)% \big{)}\oplus\big{(}\pi\wedge\pi,\textstyle\bigwedge^{2}V\big{)}.

.

Problem 73. Let (π,2)(\pi,{\mathbb{C}}^{2}) be a representation of a group GG. Suppose that the matrix of π(g)\pi(g) with respect to the basis {𝐛1,𝐛2}\{{\bf b}_{1},{\bf b}_{2}\} is given by

π(g)=(abcd).\pi(g)=\left(\begin{matrix}a&b\\ c&d\end{matrix}\right).
  1. (a)

    Compute the matrix of Sym2π(g)\mathrm{Sym}^{2}\pi(g) with respect to the basis {𝐛12,𝐛1𝐛2,𝐛22}\{{\bf b}_{1}^{2},{\bf b}_{1}{\bf b}_{2},{\bf b}_{2}^{2}\}.

  2. (b)

    Compute the matrix of ππ(g)\pi\wedge\pi(g) with respect to the basis {𝐛1𝐛2}\{{\bf b}_{1}\wedge{\bf b}_{2}\}.

Problem 74. Let (σ,V)(\sigma,V) be any irreducible 5-dimensional representation of S5S_{5}. Decompose (Sym2σ,Sym2V)(\operatorname{Sym}^{2}\sigma,\operatorname{Sym}^{2}V) and (σσ,Λ2V)(\sigma\wedge\sigma,\Lambda^{2}V) into irreducible representations.

Problem 75. Let (π,4)(\pi,{\mathbb{C}}^{4}) be the permutation representation of S4S_{4}, and let (ρ,V)(\rho,V) be the 2-dimensional irreducible representation of S4S_{4}.

  1. (a)

    Show that (Sym2π,Sym24)(\operatorname{Sym}^{2}\pi,\operatorname{Sym}^{2}{\mathbb{C}}^{4}) has a unique subrepresentation isomorphic to (ρ,V)(\rho,V).

  2. (b)

    Use the ρ\rho-isotopic projector to find that subrepresentation.

Problem 76. A group GG of order 168168 has conjugacy classes C1C_{1}, C2C_{2}, C3C_{3}, C4C_{4}, C7AC_{7A} and C7BC_{7B}, where each conjugacy class is labelled by the order of any element in that class (so, for example, any element of C7AC_{7A} or C7BC_{7B} has order 77). The following shows one of the rows of the character table of GG.

size:12156422424classC1C2C3C4C7AC7B(π1,V)31011+72172\begin{array}[]{c|cccccc}\text{size:}&1&21&56&42&24&24\\ \text{class}&C_{1}&C_{2}&C_{3}&C_{4}&C_{7A}&C_{7B}\\ \hline\cr(\pi_{1},V)&3&-1&0&1&\frac{-1+\sqrt{-7}}{2}&\frac{-1-\sqrt{-7}}{2}\\ \end{array}
  1. (a)

    Show that if xx is an element of C7AC_{7A} or C7BC_{7B}, then xx is conjugate to x2x^{2}.

  2. (b)

    Find the character table of GG.