3.11. Lecture 11

We now turn to various ways of constructing new representations out of old ones. The methods will split into two general classes:

  1. (i)

    Linear algebraic

  2. (ii)

    Group theoretic

We start with linear algebra:

3.11.1. The dual representation

Given a vector space VV, recall that VV^{*} (the dual space of VV) is the vector space consisting of all linear functionals from VV to {\mathbb{C}}, i.e. V=Hom(V,)V^{*}=\operatorname{Hom}(V,{\mathbb{C}}). We define a representation (π,V)(\pi^{*},V^{*}) of GG by letting (for every gGg\in G and λV\lambda\in V^{*}) π(g)λ\pi^{*}(g)\lambda be the functional defined via the formula

[π(g)λ](𝐯):=λ(π(g1)𝐯)𝐯V.[\pi^{*}(g)\lambda]({\bf v}):=\lambda\big{(}\pi(g^{-1}){\bf v}\big{)}\qquad% \forall{\bf v}\in V.

Note that this may be seen as a special case of some representations we have seen before:

  1. (i)

    (π,V)(\pi^{*},V^{*}) is a subrepresentation of the permutation representation on the space of {\mathbb{C}}-valued functions on VV that arises from the linear π\pi-action of GG on VV.

  2. (ii)

    Recall the representation (cπρ,Hom(V,W))(c_{\pi}^{\rho},\operatorname{Hom}(V,W)) (cf. Lemma 2.9.1). The dual representation is the special case (ρ,W)=(triv,)(\rho,W)=({\mathrm{triv}},{\mathbb{C}}).

Being a special case of cπρc_{\pi}^{\rho}, Lemma 2.9.2 (b) gives χπ=χπ¯\chi_{\pi^{*}}=\overline{\chi_{\pi}}. Problem 3.11.4 below gives another proof of this fact.

3.11.2. Quotient representations

Let (π,V)(\pi,V) be a representation of a group GG and (π|W,W)(\pi|_{W},W) a subrepresentation of (π,V)(\pi,V). Recall that the quotient space V/WV/W is the vector space VV modulo the equivalence relation 𝐯𝐰𝐯𝐰W{\bf v}\sim{\bf w}\Leftrightarrow{\bf v}-{\bf w}\in W. We normally write elements of V/WV/W in the form 𝐯+W{\bf v}+W. We define a representation (π^,V/W)(\hat{\pi},V/W) of GG on V/WV/W via the formula π^(g)(𝐯+W):=π(g)𝐯+W\hat{\pi}(g)({\bf v}+W):=\pi(g){\bf v}+W. Note that it is critical that (π,W)(\pi,W) is a subrepresentation for this to make sense (i.e. π(g)W=W\pi(g)W=W).

The following proposition will let us avoid using quotient representations too often:

Proposition 3.11.1.

If (π,V)=(π|W,W)(π|W,W)(\pi,V)=(\pi|_{W},W)\oplus(\pi|_{W^{\prime}},W^{\prime}), then

(π^,V/W)(π|W,W).(\hat{\pi},V/W)\cong(\pi|_{W^{\prime}},W^{\prime}).

As a consequence of the above, we have

Proposition 3.11.2.

- Let (π,V)(\pi,V) be a finite dimensional representation of a finite group GG and (π|W,W)(\pi|_{W},W) a subrepresentation with corresponding quotient representation (π^,V/W)(\hat{\pi},V/W). Then

χπ^=χπχπ|W.\chi_{\hat{\pi}}=\chi_{\pi}-\chi_{\pi|_{W}}.

The proofs of both these results are left as exercises below.

We won’t need to use quotient representations too often, but they are required to make what we do next rigorous.

3.11.3. Tensor Products

We now define the tensor product of two representations; this is a way of ‘multiplying’ two or more representations. Throughout this section, let (π,V)(\pi,V) and (ρ,W)(\rho,W) be two representations of a group GG.

Firstly, we consider the permutation representation of GG on the free vector space (V×W){\mathbb{C}}(V\times W); we write this as πρ\pi\otimes\rho, i.e. the elements of (V×W){\mathbb{C}}(V\times W) are finite formal sums

(𝐯,𝐰)V×Wz(𝐯,𝐰)(𝐯,𝐰),\sum_{({\bf v},{\bf w})\in V\times W}z_{({\bf v},{\bf w})}({\bf v},{\bf w}),

for z(𝐯,𝐰)z_{({\bf v},{\bf w})}\in{\mathbb{C}}, where all but finitely many z(𝐯,𝐰)z_{({\bf v},{\bf w})} are non-zero. Note that since V×WV\times W is an infinite set, (V×W){\mathbb{C}}(V\times W) is an infinite-dimensional vector space, with basis given by all possible pairs (𝐯,𝐰)V×W({\bf v},{\bf w})\in V\times W. The group GG acts via the formula

[πρ](g)((𝐯,𝐰)V×Wz(𝐯,𝐰)(𝐯,𝐰))=(𝐯,𝐰)V×Wz(𝐯,𝐰)(π(g)𝐯,ρ(g)𝐰).[\pi\otimes\rho](g)\left(\sum_{({\bf v},{\bf w})\in V\times W}z_{({\bf v},{\bf w% })}({\bf v},{\bf w})\right)=\sum_{({\bf v},{\bf w})\in V\times W}z_{({\bf v},{% \bf w})}\big{(}\pi(g){\bf v},\rho(g){\bf w}\big{)}.

This may seem like a sensibly defined representation however note that in (V×W){\mathbb{C}}(V\times W), the vectors (𝐯1+𝐯2,𝐰)({\bf v}_{1}+{\bf v}_{2},{\bf w}) and (𝐯1,𝐰)+(𝐯2,𝐰)({\bf v}_{1},{\bf w})+({\bf v}_{2},{\bf w}) are different. In fact we don not have any relations that allow us to split up brackets or pull out scalar factors. We therefore define the vector space

U=span{(α𝐯1+β𝐯2\displaystyle U=\mathrm{span}\bigg{\{}(\alpha{\bf v}_{1}+\beta{\bf v}_{2} ,λ𝐰1+μ𝐰2)αλ(𝐯1,𝐰1)αμ(𝐯1,𝐰2)\displaystyle,\lambda{\bf w}_{1}+\mu{\bf w}_{2})-\alpha\lambda({\bf v}_{1},{% \bf w}_{1})-\alpha\mu({\bf v}_{1},{\bf w}_{2})
\displaystyle- βλ(𝐯2,𝐰1)βμ(𝐮2,𝐰2)|𝐯1,𝐯2V,𝐰1,𝐰2W,α,β,λ,μ}.\displaystyle\beta\lambda({\bf v}_{2},{\bf w}_{1})-\beta\mu({\bf u}_{2},{\bf w% }_{2})\,|\,{\bf v}_{1},{\bf v}_{2}\in V,\;{\bf w}_{1},{\bf w}_{2}\in W,\;% \alpha,\beta,\lambda,\mu\in{\mathbb{C}}\bigg{\}}.

We claim that (πρ,U)(\pi\otimes\rho,U) is a subrepresentation of (πρ,(V×W))\big{(}\pi\otimes\rho,{\mathbb{C}}(V\times W)\big{)}, and define the tensor product representation as the quotient representation

(πρ,VW):=(πρ,(V×W)/U).\big{(}\pi\otimes\rho,V\otimes W\big{)}:=\big{(}\pi\otimes\rho,{\mathbb{C}}(V% \times W)/U\big{)}.

Taking the quotient space by UU allows us to identify vectors that differ by elements of UU. If we consider our example notice that they differ by (𝐯1+𝐯2,𝐰)(𝐯1,𝐰)(𝐯2,𝐰)({\bf v}_{1}+{\bf v}_{2},{\bf w})-({\bf v}_{1},{\bf w})-({\bf v}_{2},{\bf w}) which is one of the spanning elements of UU, hence

(𝐯1+𝐯2,𝐰)+U=(𝐯1,𝐰)+(𝐯2,𝐰)+U({\bf v}_{1}+{\bf v}_{2},{\bf w})+U=({\bf v}_{1},{\bf w})+({\bf v}_{2},{\bf w}% )+U

as elements of VWV\otimes W. The same holds for the other linear relations in both components of (V×W){\mathbb{C}}(V\times W). In other words, modding out the subspace UU is a way of forcing desired linear relations on the space (V×W){\mathbb{C}}(V\times W).

If 𝐯V{\bf v}\in V and 𝐰W{\bf w}\in W, then we write 𝐯𝐰{\bf v}\otimes{\bf w} for the element (𝐯,𝐰)+U({\bf v},{\bf w})+U in VWV\otimes W.

Important: Not every element of V×WV\times W may be written in the form 𝐯𝐰{\bf v}\otimes{\bf w} (see Problem 3.11.8 below). However, the vectors 𝐯𝐰{\bf v}\otimes{\bf w} do span VWV\otimes W, and the following proposition gives a convenient way of finding a basis from this spanning set:

Proposition 3.11.3.

Let VV and WW be finite-dimensional vector spaces, with 𝐯1,,𝐯n{\bf v}_{1},\ldots,{\bf v}_{n} being a basis of VV and 𝐰1,,𝐰m{\bf w}_{1},\ldots,{\bf w}_{m} being a basis of WW. Then

{𝐯i𝐰j| 1in, 1jm}\{{\bf v}_{i}\otimes{\bf w}_{j}\,|\,1\leq i\leq n,\;1\leq j\leq m\}

is a basis of VWV\otimes W. In particular, dim(VW)=dim(V)dim(W)\operatorname{dim}(V\otimes W)=\operatorname{dim}(V)\,\operatorname{dim}(W).

Example 3.11.4.

The above basically says nmnm{\mathbb{C}}^{n}\otimes{\mathbb{C}}^{m}\cong{\mathbb{C}}^{nm}.

Remark 3.11.5.

An element in VWV\otimes W of the form 𝐯𝐰{\bf v}\otimes{\bf w} (𝐯V{\bf v}\in V, 𝐰W{\bf w}\in W) is called a pure tensor.

The previous proposition can be used to find the characters of tensor products of representations:

Proposition 3.11.6.

χπρ=χπχρ\chi_{\pi\otimes\rho}=\chi_{\pi}\chi_{\rho}

Proof.

Let 𝐯1,,𝐯n{\bf v}_{1},\ldots,{\bf v}_{n} be an eigenbasis of VV for π(g)\pi(g) (π(g)𝐯i=λi𝐯i\pi(g){\bf v}_{i}=\lambda_{i}{\bf v}_{i} ) and 𝐰1,,𝐯m{\bf w}_{1},\ldots,{\bf v}_{m} be an eigenbasis of WW for ρ(g)\rho(g) ρ(g)𝐰j=μj𝐰j\rho(g){\bf w}_{j}=\mu_{j}{\bf w}_{j}). Then from the Proposition 3.11.3, {𝐯i𝐰j}\{{\bf v}_{i}\otimes{\bf w}_{j}\} is a basis of VWV\otimes W, and is in fact an eigenbasis for [πρ](g)[\pi\otimes\rho](g), since

[πρ](g)𝐯i𝐰j=(π(g)𝐯i)(ρ(g)𝐰j)=(λi𝐯i)(μj𝐰j)=λiμj(𝐯i𝐰j).[\pi\otimes\rho](g){\bf v}_{i}\otimes{\bf w}_{j}=\big{(}\pi(g){\bf v}_{i}\big{% )}\otimes\big{(}\rho(g){\bf w}_{j}\big{)}=(\lambda_{i}{\bf v}_{i})\otimes(\mu_% {j}{\bf w}_{j})=\lambda_{i}\mu_{j}({\bf v}_{i}\otimes{\bf w}_{j}).

This gives χπρ(g)=ijλiμj=(iλi)(jμj)=χπ(g)χμ(g)\chi_{\pi\otimes\rho}(g)=\sum_{ij}\lambda_{i}\mu_{j}=\left(\sum_{i}\lambda_{i}% \right)\left(\sum_{j}\mu_{j}\right)=\chi_{\pi}(g)\chi_{\mu}(g). ∎

Example 3.11.7.

From Lemma 2.9.2 (b), we have that the character of (cπρ,Hom(V,W))(c_{\pi}^{\rho},\operatorname{Hom}(V,W)) is χρχπ¯\chi_{\rho}\overline{\chi_{\pi}}. From Proposition 3.11.6 and Problem 3.11.4, we then get

(cπρ,Hom(V,W))(ρ,W)(π,V).\big{(}c_{\pi}^{\rho},\operatorname{Hom}(V,W)\big{)}\cong(\rho,W)\otimes(\pi^{% *},V^{*}).

3.11.4. Exercises

.

Problem 64. Let (π,V)(\pi,V) be a finite-dimensional representation of a finite group GG with dual representation (π,V)(\pi^{*},V^{*}).

  1. (a)

    Let ={𝐯i}i=1,,dimV{\mathcal{B}}=\{{\bf v}_{i}\}_{i=1,\ldots,\operatorname{dim}V} be a basis of VV and 𝒜={λi}i=1,,dimV{\mathcal{A}}=\{\lambda_{i}\}_{i=1,\ldots,\operatorname{dim}V^{*}} the corresponding dual basis of VV^{*}, i.e.

    λi(𝐯j)={1ifi=j,0ifij.\lambda_{i}({\bf v}_{j})=\begin{cases}1\quad&\mathrm{if}\;i=j,\\ 0\quad&\mathrm{if}\;i\neq j.\end{cases}

    Show that [π(g)]𝒜=[π(g1)]T[\pi^{*}(g)]_{{\mathcal{A}}}=[\pi(g^{-1})]_{{\mathcal{B}}}^{T} and χπ=χπ¯\chi_{\pi^{*}}=\overline{\chi_{\pi}}.

  2. (b)

    Show that (π,V)(\pi^{*},V^{*}) is irreducible if and only if (π,V)(\pi,V) is.

Problem 65. Let (π,V)(\pi,V) be a representation of a group GG and (π,W)(\pi,W) a subrepresentation of (π,V)(\pi,V). Verify that defining

π(g)(𝐯+W):=π(g)𝐯+W𝐯+WV/W,gG\pi(g)({\bf v}+W):=\pi(g){\bf v}+W\qquad\forall\;{\bf v}+W\in V/W,\;g\in G

gives a GG-representation (π,V/W)(\pi,V/W).

Problem 66. Prove Propositions 3.11.1 and 3.11.2.

Problem 67. Consider the representation of S3S_{3} on (ρ,V)(\rho,V), where V=2V={\mathbb{C}}^{2}, given by

ρ(1 2)=(0110),ρ(1 2 3)=(ω00ω2)\rho(1\;2)=\begin{pmatrix}0&1\\ 1&0\end{pmatrix},\qquad\rho(1\;2\;3)=\begin{pmatrix}\omega&0\\ 0&\omega^{2}\end{pmatrix}

with ω=e2πi/3\omega=e^{2\pi i/3}.

  1. (a)

    Write down the matrices of (ρρ)(1 2)(\rho\otimes\rho)(1\;2) and (ρρ)(1 2 3)(\rho\otimes\rho)(1\;2\;3) with respect to the basis

    𝐞1𝐞1,𝐞1𝐞2,𝐞2𝐞1,𝐞2𝐞2{\bf e}_{1}\otimes{\bf e}_{1},{\bf e}_{1}\otimes{\bf e}_{2},{\bf e}_{2}\otimes% {\bf e}_{1},{\bf e}_{2}\otimes{\bf e}_{2}

    of VVV\otimes V (where 𝐞1{\bf e}_{1} and 𝐞2{\bf e}_{2} are the standard basis of VV).

  2. (b)

    Write the character of (ρ,V)(ρ,V)(\rho,V)\otimes(\rho,V) as a sum of irreducible characters.

  3. (c)

    For each of the irreducible characters occurring in the expression of χρρ\chi_{\rho\otimes\rho} used in the previous part, find a subrepresentation of VVV\otimes V with that character.

  4. (d)

    Find an isomorphism from (sgn,)(ρ,V)(\mathrm{sgn},{\mathbb{C}})\otimes(\rho,V) to (ρ,V)(\rho,V).

  5. (e)

    Find an isomorphism from (ρ,V)(\rho^{*},V^{*}) to (ρ,V)(\rho,V).

  6. (f)

    Let (ρn,Vn)=(ρ,V)(ρ,V)(\rho^{\otimes n},V^{\otimes n})=(\rho,V)\otimes\ldots\otimes(\rho,V) with nn factors. Decompose (ρn,Vn)(\rho^{\otimes n},V^{\otimes n}) into irreducible representations.

Problem 68. Let (π,V)(\pi,V), (ρ,U)(\rho,U), and (σ,W)(\sigma,W) be three finite-dimensional representations of a finite group GG. Show that

  1. (a)

    ((π,V)(ρ,U))(σ,W)(π,V)((ρ,U)(σ,W))\big{(}(\pi,V)\otimes(\rho,U)\big{)}\otimes(\sigma,W)\cong(\pi,V)\otimes\big{(% }(\rho,U)\otimes(\sigma,W)\big{)}

  2. (b)

    ((π,V)(ρ,U))(σ,W)((ρ,U)(σ,W))((π,V)(σ,W))\big{(}(\pi,V)\oplus(\rho,U)\big{)}\otimes(\sigma,W)\cong\big{(}(\rho,U)% \otimes(\sigma,W)\big{)}\oplus\big{(}(\pi,V)\otimes(\sigma,W)\big{)}

Remark 3.11.8.

Note that (a) lets us write (π,V)(ρ,U)(σ,W)(\pi,V)\otimes(\rho,U)\otimes(\sigma,W) unambiguously (and similarly for larger products of representations).

Problem 69. Let 𝐞,𝐟{\bf e},{\bf f} form a basis of 2{\mathbb{C}}^{2}. Show that 𝐞𝐞+𝐟𝐟22{\bf e}\otimes{\bf e}+{\bf f}\otimes{\bf f}\in{\mathbb{C}}^{2}\otimes{\mathbb{% C}}^{2} cannot be written in the form 𝐯𝐰22{\bf v}\otimes{\bf w}\in{\mathbb{C}}^{2}\otimes{\mathbb{C}}^{2}.

Problem 70. For two finite-dimensional representations (π,V)(\pi,V) and (ρ,W)(\rho,W) of a finite group GG, construct an isomorphism to show that

(cπρ,Hom(V,W))(π,V)(ρ,W).\big{(}c_{\pi}^{\rho},\operatorname{Hom}(V,W)\big{)}\cong(\pi^{*},V^{*})% \otimes(\rho,W).

Problem 71. Given a finite group GG, let (π,(G))\big{(}\pi,{\mathbb{C}}(G)\big{)} denote the permutation representation of GG on (G){\mathbb{C}}(G) associated to the conjugation action of GG on itself, i.e.

π(g)(hGzhh)=hGzhghg1=hGzg1hghgG,hGzhh(G).\pi(g)\left(\sum_{h\in G}z_{h}h\right)=\sum_{h\in G}z_{h}ghg^{-1}=\sum_{h\in G% }z_{g^{-1}hg}h\qquad\forall g\in G,\;\sum_{h\in G}z_{h}h\in{\mathbb{C}}(G).
  1. (a)

    Show that χπ(g)=|G||𝒞g|\chi_{\pi}(g)=\frac{|G|}{|{\mathcal{C}}_{g}|}, where 𝒞g{\mathcal{C}}_{g} is the conjugacy class gg belongs to. Hint: use Problem 2.7.2.

  2. (b)

    Then show that

    (π,(G))ρIrr(G)(ρ,Wρ)(ρ,Wρ).\big{(}\pi,{\mathbb{C}}(G)\big{)}\cong\bigoplus_{\rho\in\mathrm{Irr}(G)}(\rho,% W_{\rho})\otimes(\rho^{*},W^{*}_{\rho}).