3.16. Lecture 16

3.16.1. The character formula

Let HGH\leq G be finite groups and (π,V)(\pi,V) a representation of HH. We now use Frobenius reciprocity to give a formula for IndHGχπ\operatorname{Ind}_{H}^{G}\chi_{\pi}.

Theorem 3.16.1.

Let 𝒞{\mathcal{C}} be a conjugacy class of GG. Let HH be a subgroup of GG and write

𝒞H=𝒟1𝒟n,{\mathcal{C}}\cap H={\mathcal{D}}_{1}\cup\ldots\cup{\mathcal{D}}_{n},

where 𝒟1,,𝒟n{\mathcal{D}}_{1},\ldots,{\mathcal{D}}_{n} are conjugacy classes of HH. Then

(IndHGχπ)(𝒞)=|G||H|i=1n|𝒟i||𝒞|χπ(𝒟i).(\mathrm{Ind}_{H}^{G}\chi_{\pi})({\mathcal{C}})=\frac{|G|}{|H|}\sum_{i=1}^{n}% \frac{|{\mathcal{D}}_{i}|}{|{\mathcal{C}}|}\chi_{\pi}({\mathcal{D}}_{i}).
Proof.

Let 1𝒞\mathbbold{1}_{\mathcal{C}} be the indicator function of 𝒞{\mathcal{C}}. Then for any class function ff on GG,

f,1𝒞G=|𝒞||G|f(𝒞).\langle f,\mathbbold{1}_{\mathcal{C}}\rangle_{G}=\frac{|{\mathcal{C}}|}{|G|}f(% {\mathcal{C}}).

Combining this with Frobenius reciprocity (Corollary 3.15.2), we have

(IndHGχπ)(𝒞)\displaystyle(\mathrm{Ind}_{H}^{G}\chi_{\pi})({\mathcal{C}}) =|G||𝒞|IndHGχπ,1𝒞G\displaystyle=\frac{|G|}{|{\mathcal{C}}|}\langle\mathrm{Ind}_{H}^{G}\chi_{\pi}% ,\mathbbold{1}_{\mathcal{C}}\rangle_{G}
=|G||𝒞|χπ,ResHG1𝒞H\displaystyle=\frac{|G|}{|{\mathcal{C}}|}\langle\chi_{\pi},\operatorname{Res}_% {H}^{G}\mathbbold{1}_{\mathcal{C}}\rangle_{H}
=|G||𝒞|i=1nχπ,1𝒟iH\displaystyle=\frac{|G|}{|{\mathcal{C}}|}\sum_{i=1}^{n}\langle\chi_{\pi},% \mathbbold{1}_{{\mathcal{D}}_{i}}\rangle_{H}
=|G||𝒞|i=1n|𝒟i||H|χπ(𝒟i)=|G||H|i=1n|𝒟i||𝒞|χπ(𝒟i)\displaystyle=\frac{|G|}{|{\mathcal{C}}|}\sum_{i=1}^{n}\frac{|{\mathcal{D}}_{i% }|}{|H|}\chi_{\pi}({\mathcal{D}}_{i})=\frac{|G|}{|H|}\sum_{i=1}^{n}\frac{|{% \mathcal{D}}_{i}|}{|{\mathcal{C}}|}\chi_{\pi}({\mathcal{D}}_{i})

which is the claimed formula. ∎

Remark 3.16.2.

We derived the character formula from Frobenius reciprocity. It is also possible to go the other way around: prove the character formula directly, then derive Frobenius reciprocity as a consequence.

Remark 3.16.3.

If gGg\in G, we write CG(g)C_{G}(g) for the centraliser of gg:

CG(g)={xG|x1gx=g}.C_{G}(g)=\{x\in G\;|\;x^{-1}gx=g\}.

By the orbit-stabiliser theorem, if 𝒞g{\mathcal{C}}_{g} is the conjugacy class of gg, then

|G||𝒞g|=|CG(g)|\frac{|G|}{|{\mathcal{C}}_{g}|}=|C_{G}(g)|

giving an interpretation for some of the factors in the above formula.

Example 3.16.4.

We continue with the example of the dihedral group. Let H=CnG=DnH=C_{n}\leq G=D_{n}, and let ψ:H×\psi:H\to{\mathbb{C}}^{\times} be a homomorphism with ψ(r)=ω\psi(r)=\omega. Then:

  1. (i)

    IndHGψ(e)=[G:H]=2\mathrm{Ind}_{H}^{G}\psi(e)=[G:H]=2.

  2. (ii)

    IndHGψ(s)=IndHGψ(rs)=0\mathrm{Ind}_{H}^{G}\psi(s)=\mathrm{Ind}_{H}^{G}\psi(rs)=0, as the conjugacy class of ss or rsrs does not intersect HH.

  3. (iii)

    If 0<i<n/20<i<n/2, then the conjugacy class {ri,ri}\{r^{i},r^{-i}\} of GG splits into two conjugacy classes, {ri}\{r^{i}\} and {ri}\{r^{-i}\}, of HH. We have

    IndHG(ψ)(ri)=2(12ψ(ri)+12ψ(r)i)=ωi+ωi.\mathrm{Ind}_{H}^{G}(\psi)(r^{i})=2\big{(}\frac{1}{2}\psi(r^{i})+\frac{1}{2}% \psi(r)^{-i}\big{)}=\omega^{i}+\omega^{-i}.
  4. (iv)

    If i=n/2i=n/2, then the conjugacy class {rn/2}\{r^{n/2}\} of GG remains as a single conjugacy class of HH and

    IndHG(ψ)(rn/2)=2ψ(rn/2)=2ωn/2.\mathrm{Ind}_{H}^{G}(\psi)(r^{n/2})=2\psi(r^{n/2})=2\omega^{n/2}.

Taking ω±1\omega\neq\pm 1 we again obtain all the irreducible 2-dimensional characters of DnD_{n}.

3.16.2. Example: D4 to S4

Let HH be the subgroup of G=S4G=S_{4} isomorphic to D4D_{4}, obtained by labeling the vertices of a square 1, …, 4 and letting D4D_{4} act on them. In other words, HH is the image of the injective homomorphism D4S4D_{4}\rightarrow S_{4} sending

r(1234),s(12)(34).r\mapsto(1234),s\mapsto(12)(34).

Recall that D4D_{4} has five irreducible representations with characters as shown:

er=(1234)r2=(13)(24)s=(12)(34)rs=(13)12122triv11111ϵ11111ϕ+11111ϕ11111σ20200\begin{array}[]{c|rrrrr}&e&r=(1234)&r^{2}=(13)(24)&s=(12)(34)&rs=(13)\\ &1&2&1&2&2\\ \hline\cr{\mathrm{triv}}&1&1&1&1&1\\ \epsilon&1&1&1&-1&-1\\ \phi_{+}&1&-1&1&1&-1\\ \phi_{-}&1&-1&1&-1&1\\ \sigma&2&0&-2&0&0\\ \end{array}

while recall that S4S_{4} has character table

e(12)(12)(34)(123)(1234)16386triv11111sgn11111π31101sgnπ31101ρ20210\begin{array}[h]{c|rrrrr}&e&(12)&(12)(34)&(123)&(1234)\\ &1&6&3&8&6\\ \hline\cr{\mathrm{triv}}&1&1&1&1&1\\ \operatorname{sgn}&1&-1&1&1&-1\\ \pi&3&1&-1&0&-1\\ \operatorname{sgn}\pi&3&-1&-1&0&1\\ \rho&2&0&2&-1&0\end{array}

We want to first find out how the conjugacy classes of S4S_{4} intersect with D4D_{4}. The result is as follows, writing 𝒞g{\mathcal{C}}_{g} for the conjugacy class of gg in S4S_{4}, and 𝒟h{\mathcal{D}}_{h} for the conjugacy class of hh in D4D_{4}.

gS4𝒞gD4sizese𝒟e1(12)𝒟rs2(12)(34)𝒟r2𝒟s1,2(123)∅︀(1234)𝒟r2\begin{array}[]{l|l|l}g\in S_{4}&{\mathcal{C}}_{g}\cap D_{4}&\text{sizes}\\ \hline\cr e&{\mathcal{D}}_{e}&1\\ (12)&{\mathcal{D}}_{rs}&2\\ (12)(34)&{\mathcal{D}}_{r^{2}}\cup{\mathcal{D}}_{s}&1,2\\ (123)&\emptyset&-\\ (1234)&{\mathcal{D}}_{r}&2\\ \end{array}

We use this and the character formula to determine IndHGϕ+\mathrm{Ind}_{H}^{G}\phi_{+}. The factor |G|/|H||G|/|H| is constant, equal to 3. We obtain:

IndHGϕ+e13(12)632/6(1)=1(12)(34)33(1/3+2/3)=3(123)80(1234)63(2/6)=1\begin{array}[]{l|r|r}&&\mathrm{Ind}_{H}^{G}\phi_{+}\\ \hline\cr e&1&3\\ (12)&6&3\cdot 2/6\cdot(-1)=-1\\ (12)(34)&3&3(1/3+2/3)=3\\ (123)&8&0\\ (1234)&6&3(-2/6)=-1\\ \end{array}

Decomposing this character, we see that

IndHGϕ+=sgn+χρ.\mathrm{Ind}_{H}^{G}\phi_{+}=\operatorname{sgn}+\chi_{\rho}.

But note that we did not need to know the character table of S4S_{4} to find the induced character.

We check that this is consistent with Frobenius reciprocity: the restriction of sgn\operatorname{sgn} to D4D_{4} is ϕ+\phi_{+}, so

ResHGsgn,ϕ+D4=sgn,IndHGϕ+S4=1\langle\operatorname{Res}^{G}_{H}\operatorname{sgn},\phi_{+}\rangle_{D_{4}}=% \langle\operatorname{sgn},\mathrm{Ind}_{H}^{G}\phi_{+}\rangle_{S_{4}}=1

as required. The restriction of χρ\chi_{\rho} to D4D_{4} is triv+ϕ+{\mathrm{triv}}+\phi_{+} so

ResHGχρ,ϕ+D4=χρ,IndHGϕ+S4=1\langle\operatorname{Res}^{G}_{H}\chi_{\rho},\phi_{+}\rangle_{D_{4}}=\langle% \chi_{\rho},\mathrm{Ind}_{H}^{G}\phi_{+}\rangle_{S_{4}}=1

(we could also check that the restrictions of the other irreducible characters of S4S_{4} to D4D_{4} do not contain ϕ+\phi_{+}).

3.16.3. Exercises

.

Problem 86. Let χσ\chi_{\sigma} be the irreducible degree 3 character (i.e. χσ(e)=3\chi_{\sigma}(e)=3) of H=A5H=A_{5} such that

χσ((12345))=1+52.\chi_{\sigma}((12345))=\frac{1+\sqrt{5}}{2}.

Let G=A6G=A_{6}, with HH as the subgroup of GG fixing 6. Compute the character IndHGχσ\mathrm{Ind}^{G}_{H}\chi_{\sigma}.

Problem 87. Let H=(12p)SpH=\langle(12\ldots p)\rangle\subseteq S_{p}, for pp a prime, and ψ\psi a nontrivial character of HH.

  1. (a)

    Compute IndHSpψ\mathrm{Ind}_{H}^{S_{p}}\psi.

  2. (b)

    By considering IndHSpψ,IndHSpψSp\langle\mathrm{Ind}_{H}^{S_{p}}\psi,\mathrm{Ind}_{H}^{S_{p}}\psi\rangle_{S_{p}}, show that

    (p1)!1(modp).(p-1)!\equiv-1\quad(\mathrm{mod}\;p).

    (Recall that if ζ\zeta is a non-trivial pp-th root of unity, we have 1+ζ+ζ2++ζp1=01+\zeta+\zeta^{2}+\ldots+\zeta^{p-1}=0.)

Problem 88. Let

G=x,y|y7=x3=e,xyx1=y2.G=\left\langle x,y\,|\,y^{7}=x^{3}=e,\,xyx^{-1}=y^{2}\right\rangle.

GG has 21 elements, and may be expressed as {xiyj| 0i2, 0j6}\{x^{i}y^{j}\,|\,0\leq i\leq 2,\,0\leq j\leq 6\}.

  1. (a)

    Show that H=yH=\langle y\rangle is a normal subgroup of GG.

  2. (b)

    By considering representations lifted from G/HG/H and induced from HH, find the character table of GG.